panic Documentation

Author

Apr 14, 2020

Contents

1 PANIC Description 3
2 Changelog 5
3 Installing PANIC on a New System 7
3.1 Dependencies i e 7
3.2 Runthe GUlandcreatea PyAlarm 7
3.3 Runthe PyAlarm Server e 8
4 PyAlarm Device Server User Guide 9
4.1 DesCription e e e e e e e e 10
42 Internal Structure L L e e e e 10
43 Alarm Syntax Recipes o L e e e e e e e 11
4.4 PyAlarm Device Properties e 13
4.5 Device Server Example e 16
4.6 Maill MeSSages i e e e e e e e 17
5 PANIC Recipes 19
5.1 Alarms Distribution e e e e e e e e 19
5.2 Alarm Formulas Examples o e 20
53 AlarmStates 23
54 HierarchiesIn Alarms e 24
5.5 Special Alarm Recipes e 26
5.6 Exception Managementl e e e e e e e e e 27
5.7 Grouping Alarms L e e e e 28
5.8 How PyAlarm Device Server Works 28
59 PANICSetup o oot 29
5.10 Exception Management in Panic Alarms Lo Lo oo 32
5.11 Using the PANIC python APT e 32
5.12 PanicAdminUsSers property v v it it e e e e e e e e e e e e e 34
5.13 PyAlarm Startup Modes e e 35
5.14 PyAlarm timing configuration L e e e e e e e e e e e 35
5.15 Testing your PyAlarm installation L e 35
5.16 PANIC Receivers, Loggingand Actions i e 36
5.17 PyAlarm Using Events With Taurus 0 .. oL o 38
6 Indices and tables 41

panic Documentation

PANIC is a set of tools (api, Tango device server, user interface) that provides:
* Periodic evaluation of a set of conditions.
* Notification (email, sms, pop-up, speakers)
* Keep a log of what happened. (files, Tango Snapshots)
* Taking automated actions (Tango commands / attributes)
* Tools for configuration/visualization

Contents:

Contents 1

panic Documentation

2 Contents

CHAPTER 1

PANIC Description

panic Documentation

4 Chapter 1. PANIC Description

CHAPTER 2

Changelog

panic Documentation

6 Chapter 2. Changelog

CHAPTER 3

Installing PANIC on a New System

3.1 Dependencies

PANIC is available from Github, PyPI and as Debian or SuSE packages.
If you install from SuSE or Debian packages dependencies will be automatically installed.

If not, then you’ll need Tango, PyTango and Fandango for the server side (including its dependencies, ZMQ, numpy,
o).

For the client side you’ll also need Taurus library and PyQt4.

You should be able to get all these packages also from www.tango-controls.org

3.2 Run the GUI and create a PyAlarm

Running “setup.py install” should install the panic-gui script in your system.
But if you don’t want to install the application you can just run python panic/gui/gui.py to launch the client.

In your first run it will apply completely empty. Just create your first PyAlarm instance going to the “Config” icon in
the toolbar and pushing “Create New” button.

Now you can create your first PyAlarm pushing “New” in the main widget. You’ll be prompted to fill the gaps, for a
first installation I recommend this alarm:

TAG: TEST_LOG Description: just testing Severity: WARNING Receivers:
your_mail @your_domain.com Formula: True

This simple alarm will allow you to check if email sending works properly.

mailto:your_mail@your_domain.com

panic Documentation

3.3 Run the PyAlarm Server

Use Astor or the shell to start your newly created PyAlarm:
python ds/PyAlarm.py TEST -v4
After ~45 seconds (if you didn’t modified the default configuration) you’ll receive your first email from PANIC.

Now head to the configuration docs to know all the options you have for tuning the behaviour.

8 Chapter 3. Installing PANIC on a New System

CHAPTER 4

PyAlarm Device Server User Guide

Contents

* PyAlarm Device Server User Guide

— Description

— Internal Structure
% The AlarmAPI
* The updateAlarms thread
* The TangoEval engine

— Alarm Syntax Recipes
* Sending a Test Message at Startup
* Testing a device availability
x Getting Tango state/attribute/value/quality/time/delta in formulas

x Creating a periodic self-reset alarm

*

Enabling search, expression matching and list comprehensions
* Some list comprehension examples
* Grouping Alarms in Formulas

— PyAlarm Device Properties
* Distributing Alarms between servers

x Alarm Declaration Properties

- AlarmList

panic Documentation

- AlarmDescriptions
- AlarmReceivers
- Adding ACTION as receiver
- PhoneBook (not implemented yet)
* REMINDER / RECOVERED / AUTORESET messages
- Reminder
- AlertOnRecovery
- AutoReset
* Snapshot properties
- UseSnap
- CreateNewContexts
* Alarm Configuration Properties
— Device Server Example
— Mail Messages

* Format of Alarm message

* Format of Recovered message

4.1 Description

This device server is used as a alarm logger, it connects to the list of attributes provided and verifies its values.
Its focused on notifying Alarms by log files, Mail, SMS and (some day in the future) electronic logbook.

You can acknowledge these alarms by a proper command.

4.2 Internal Structure

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device will share
a common evaluation environment determined by PyAlarm properties.

4.2.1 The AlarmAPI

This object encapsulates the access to the alarm configurations database. Tango Database is used by default, all
alarm configurations are stored as device properties of each declared PyAlarm device (AlarmList, AlarmReceivers,
AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

10 Chapter 4. PyAlarm Device Server User Guide

panic Documentation

4.2.2 The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod. All Enabled alarms will be evaluated
at each cycle; and if evaluated to a True value (understood as any value not in (0,”“,None,False,[],{ })).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active. Then
the PyAlarm will process all elements of the AlarmReceivers list.

4.2.3 The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value. It will also provide
several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1. This cache allows
to create alarms using .delta or inspecting the cache for specific behaviors.

4.3 Alarm Syntax Recipes

Alarms are parsed and evaluated using fandango.TangoEval class.

4.3.1 Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList —-> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers —> DEBUG: test@tester.com

4.3.2 Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm
will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > le-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > le-4

4.3.3 Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception}

attribute: if no attribute name is given, then device state is read.

’PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT

value: default, returns the value of the attribute

’Pressure_Alarm: BL22/CT/EPS-PLC-01/CCl_AF.value > le-5

4.3. Alarm Syntax Recipes 11

mailto:test@tester.com

panic Documentation

time: returns the epoch in seconds of the last value read

’Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now—60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

’Temperature_Alarm: BL22/CT/EPS-PLC-01/0P_WBAT_OHO01_01_TCll.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size
AlarmThreshold+1)

’Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

’Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

4.3.4 Creating a periodic self-reset alarm
A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties.
See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC: (FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

4.3.5 Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

’any([ATTR_ALARM==s+'.quality' for s in FIND ('dom/fam/*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

’any([ATTR_ALARMZZQUALITY(S) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an
<pre>event_received(.. .)</pre> hook.

4.3.6 Some list comprehension examples

’any([s for s in FIND(SR/ID/SCW01/Cooler+Err+)])

equals to

’any(FIND(SR/ID/SCWOl/Cooler*Err*))

The negate:

12 Chapter 4. PyAlarm Device Server User Guide

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

panic Documentation

’any([s::O for s in FIND (SR/ID/SCW01/Cooler+Err+)])

is equivalent to

’any(not s for s in FIND(SR/ID/SCWO01l/Cooler*Err«*)])

is equivalent to

’not all (FIND(SR/ID/SCW01l/Cooler*Err«))

is equivalent to

’[s for s in FIND(SR/ID/SCW01l/Cooler*Err+) if not s]

4.3.7 Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

’ALARM_I_OR_2: ALARM 1 or ALARM 2

or:

’ALARM_I_OR_2: any ((ALARM_1 , ALARM 2))

or:

’ALARM_ANY: any (FIND (my/alarm/device/ALARM_x))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

’GROUP(my/alarm/device/ALARM_[12])

4.4 PyAlarm Device Properties

4.4.1 Distributing Alarms between servers

Alarms can be distributed between PyAlarm servers using the PyAlarm/AlarmsList property. A Panic system works
well with 1200+ alarms distributed in 75 devices, with loads between 5 and 70 attrs/device. But instead of thinking in
terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same host or subsystem.

There are two reasons to do that (and also apply to Archiving):

4.4. PyAlarm Device Properties

13

panic Documentation

* When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If
alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When
alarms are grouped by host you isolate the problems.

¢ Same applies for very event-intensive devices. Devices that generate a lot of information will need lower at-
trs/pyalarm ratio than devices that do not change so much.

But, it is a good advice to keep the overall number of alarms in the system below 10K alarms. For manageability of
the log system and avoid avalanches of useless information the logical number of alarms should be around or below
1000.

4.4.2 Alarm Declaration Properties

AlarmList

Format of alarms will be:

TAG1l:LT/VC/Devl
TAG2:LT/VC/Devl/State
TAG3:LT/VC/Devl/Pressure > le-4

NOTE: This property was previously called AlarmsList; it is still loaded if AlarmList is empty for backward compati-
bility

AlarmDescriptions

Description to be included in emails for each alarm. The format is:

TAG:AlarmDescriptions...

NOTE: Special Tags like $NAME (for name of PyAlarm device) or $TAG (for name of the Alarm) will be automati-
cally replaced in description.

AlarmReceivers

TAGl:vacuum@accelerator.es, SMS:+34935924381,file:/tmp/err.log
vacuum@accelerator.es:TAGl, TAG2, TAG3

Other options are SNAP or ACTION:

user@cells.es,

SMS:+34666777888, #If SMS sending available

SNAP, #Alarm changes will be recorded in SNAP database.

ACTION (alarm:command, mach/alarm/beep/play_sequence, SDESCRIPTION)

Or Telegram messages, see:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/TelegramSetup.rst

14 Chapter 4. PyAlarm Device Server User Guide

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/TelegramSetup.rst

panic Documentation

Adding ACTION as receiver

Executing a command on alarm/disable/reset/acknowledge:

ACTION (alarm:command,mach/alarm/beep/play_sequence, SDESCRIPTION)

The syntax allow both attribute/command execution and the usage of multiple typed arguments:

ACTION (alarm:command, mach/dummy/motor/move, int (1) ,int (10))
ACTION (reset:attribute, mach/dummy/motor/position, int (0))

Also commands added to the Class property @ AllowedCommands@ can be executed:

ACTION (alarm:system:beep&)

PhoneBook (not implemented yet)

File where alarm receivers aliases are declared; e.g.

’User:user@accelerator.es;SMS:+34666555666

Default location is: ‘* SHOME/var/alarm_phone_book.log *

If User and Operator are defined in phonebook, AlarmsReceivers can be:

’TAG2:User,Operator

4.4.3 REMINDER / RECOVERED / AUTORESET messages

Reminder

If a number of seconds is set, a reminder mail will be sent while the alarm is still active, if 0 no Reminder will be sent.

AlertOnRecovery
A message is sent if an alarm is active but the conditions of the attributes return to a safe value. To enable the message

the content of this property must contain ‘email’, ‘sms’ or both. If disabled no RECOVERY/AUTO-RESET messages
are sent.

AutoReset

If a number of seconds is set, the alarm will reset if the conditions are no longer active after the given interval.

4.4.4 Snapshot properties

UseSnap

If false no snapshots will be trigered (unless specifically added to receivers using “SNAP”),

4.4. PyAlarm Device Properties 15

panic Documentation

CreateNewContexts

It enables PyAlarm to create new contexts for alarms if no matching context exists in the database.

4.4.5 Alarm Configuration Properties

(In future releases these properties could be individually configurable for each alarm)
Enable : If False forces the device to Disabled state and avoids messaging.
LogFile : File where alarms are logged Default: “/tmp/alarm_$NAME.log”

FlagFile : File where a 1 or 0 value will be written depending if theres active alarms or not.n
This file can be used
by other notification systems. Default: “/tmp/alarm_ds.nagios”

PollingPeriod : Periode in seconds. in which all attributes not event-driven will be polled. Default: 60000
MaxAlarmsPerDay : Max Number of Alarms to be sent each day to the same receiver. Default: 3
AlarmThreshold : Min number of consecutive Events/Pollings that must trigger an Alarm. Default: 3
FromAddress : Address that will appear as Sender in mail and SMS Default: “controls”

SMSConfig : Arguments for sendSMS command Default: “:”

MaxMessagesPerAlarm : To avoid the previous property to send a lot of messages continuously this property has
been added to limit the maximum number of messages to be sent each time that an alarm is enabled/recovered/reset.

StartupDelay : Time that PyAlarm waits before starting the Alarm evaluation threads.
EvalTimeout : Timeout for read_attribute calls, in milliseconds .

UseProcess : To create new OS processes instead of threads.

4.5 Device Server Example

These will be the typical properties of a PyAlarm device

,,,
SERVER PyAlarm/AssemblyArea, PyAlarm device declaration
,,,
PyAlarm/AssemblyArea/DEVICE/PyAlarm: "LAB/VC/Alarms"

——— LAB/VC/Alarms properties

LAB/VC/Alarms—>AlarmDescriptions: "OVENPRESSURE:The pressure in the Oven exceeds Range
LA
"ADIXENPRESSURE:The pressure in the Roughing Station_,
—exceeds Range",\
"OVENTEMPERATURE:The Temperature of the Oven exceeds,
—Range", \
"DEBUG:Just for debugging purposes"
LAB/VC/Alarms->AlarmReceivers: OVENPRESSURE:somebody@cells.es, someone_elsef@cells.es,
—SMS:+34999666333, \
ADIXENPRESSURE:somebody@cells.es, someone_else@cells.es,
—SMS:+34999666333, \
OVENTEMPERATURE : somebody@cells.es, someone_elsef@cells.es,
—SMS:+34999666333,\

(continues on next page)

16 Chapter 4. PyAlarm Device Server User Guide

panic Documentation

(continued from previous page)

DEBUG: somebody@cells.es

LAB/VC/Alarms—->AlarmsList: "OVENPRESSURE:LAB/VC/BestecOven—1/Pressure_mbar > 5e-4",\
"OVENRUNNING:LAB/VC/BestecOven—1/MaxValue > 70", \
"ADIXENPRESSURE :LAB/VC/Adixen—-01/P1 > le-4 and OVENRUNNING", \
"OVENTEMPERATURE : LAB/VC/BestecOven—-1/MaxValue > 220", \
"DEBUG:OVENRUNNING and not PCISDOWN"

LAB/VC/Alarms—>PollingPeriod: 30

LAB/VC/Alarms—->SMSConfig:

4.6 Mail Messages

PyAlarm allows to send mail notifications. Each alarm may be configured with AlarmReceivers property to provide
notification list. There is also a GobalReceivers property which allows to define notification for all alarms.

PyAlarm supports two ways of sending mails configured with the MailMethod class property:
* using mail shell command, when MailMethod is set to mail, which is default,
* or using smtplib python library when MailMethod is set to smtp[:host|:port]].

When using mail method it setup from variable as ‘-S’ option (see: https://linux.die.net/man/1/mail). However, some
setups may require to use -r option additionally. To enable it set MailDashRoption class property with a proper mail
address.

As it is now, mail messages are formatted as the following:

4.6.1 Format of Alarm message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
LAB/VC/BestecOven—1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

Alarm receivers are:
somebody@cells.es
someone_elsef@lcells.es
Other Active Alarms are:
DEBUG:Fri Nov 7 18:37:35 2008:0VENRUNNING and not PCISDOWN
OVENRUNNING:Fri Nov 7 18:37:17 2008:LAB/VC/BestecOven—-1/MaxValue > 70
Past Alarms were:
OVENTEMPERATURE:Fri Nov 7 20:49:46 2008

4.6.2 Format of Recovered message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
LAB/VC/BestecOven—1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

(continues on next page)

4.6. Mail Messages 17

https://linux.die.net/man/1/mail

panic Documentation

(continued from previous page)

Alarm receivers are:

somebody@cells.es
someone_elsef@lcells.es

Other Active Alarms are:
DEBUG:Fri Nov

OVENRUNNING:Fri Nov

Past Alarms were:

OVENTEMPERATURE:Fri Nov

7 18:37:35 2008:0VENRUNNING and not PCISDOWN
7 18:37:17 2008:LAB/VC/BestecOven—-1/MaxValue > 70

7 20:49:46 2008

18

Chapter 4. PyAlarm Device Server User Guide

CHAPTER B

PANIC Recipes

5.1 Alarms Distribution

5.1.1 About distributing load (answer to paul bell, 2014)

We have 1200+ alarms and system works quite well with it. But regarding distribution of PyAlarm devices and servers
the rules must be more intelligent.

Instead of thinking in terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same
host or subsystem.

There are two reasons to do that (and also apply to Archiving):

* When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If
alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When
alarms are grouped by host you isolate the problems.

» Same applies for very event-intensive devices. Devices that generate a lot of information will need lower at-
trs/pyalarm ratio than devices that do not change so much.

Apart of that ... if you have 1000 alarms just for the linac then you may have a wrong specification. I use to say than
“all” should be in the order of 10K ; by experience any number about that is too much. If you need more than 10K of
a kind what you really need is to add a level of abstraction (do not check all gauges of a vacuum section, just had an
attribute where you can read the max value).

It applies to all Tango systems I’ve seen (alarms, archiving, save/restore, pool, device tree, . ..); if you reach a number
above 10K then you must add an abstraction layer. It’s not only that you reach a performance limit, also your users
will feel too dazed and confused when searching for things.

e.g. Our accelerator group requested 1200 alarms ... and after some months they asked for a filter to show only the
240 they really care about.

19

panic Documentation

5.2 Alarm Formulas Examples

Contents

* Alarm Formulas Examples

Sending a Test Message at Startup

Testing a device availability

Getting Tango state/attribute/value/quality/time/delta in formulas

Creating a periodic self-reset alarm

Enabling search, expression matching and list comprehensions

Some list comprehension examples

Grouping Alarms in Formulas

Alarm on delta and value

Generating Clock Signals

Alarms are parsed and evaluated using fandango.TangoEval class.

5.2.1 Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList —-> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers -> DEBUG: test@tester.com

5.2.2 Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm
will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > le-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > le-4

5.2.3 Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception} ‘

attribute: if no attribute name is given, then device state is read.

’PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT ‘

value: default, returns the value of the attribute

20 Chapter 5. PANIC Recipes

mailto:test@tester.com

panic Documentation

’Pressure_Alarm: BL22/CT/EPS-PLC-01/CCl_AF.value > le-5

time: returns the epoch in seconds of the last value read

’Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now—60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

’Temperature_Alarm: BL22/CT/EPS-PLC-01/0P_WBAT_OHO01_01_TCll.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size
AlarmThreshold+1)

’Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

’Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

5.2.4 Creating a periodic self-reset alarm
A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties.
See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC: (FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

5.2.5 Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

’any([ATTR_ALARM::s+'.quality' for s in FIND('dom/fam/+*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

’any([ATTR_ALARM::QUALITY(S) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an
<pre>event_received(. ..)</pre> hook.

5.2.6 Some list comprehension examples

any ([s for s in FIND(SR/ID/SCW01l/Cooler+Err«)])

equals to

5.2. Alarm Formulas Examples 21

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

panic Documentation

’any(FIND(SR/ID/SCWOl/Cooler*Err*))

The negate:

’any([s::O for s in FIND(SR/ID/SCW01/Cooler+Err«*)])

is equivalent to

any (not s for s in FIND (SR/ID/SCWO01/Cooler+Errx)])

is equivalent to

’not all (FIND(SR/ID/SCW01/Cooler*Err«))

is equivalent to

’[s for s in FIND(SR/ID/SCW01l/Cooler+Err+) if not s]

5.2.7 Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

’ALARM_l_OR_Z: ALARM_1 or ALARM_2

or:

’Z—\LZ—\RM_I_OR_Z: any ((ALARM_1 , ALARM 2))

or:

’ALARM_ANY: any (FIND (my/alarm/device/ALARM_x))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP (my/alarm/device/ALARM_[12])

5.2.8 Alarm on delta and value

This alarm will be triggered whenever a channel (HV*Code attributes) changes its value (delta!=0) and the new value
is OFF (value=0)

any ([(changed and value==0) for changed,value in
zip (FIND (blx/vc/ipct*/hv+code.delta) ,

FIND (blx/vc/ipct+/hvscode.value))])

22 Chapter 5. PANIC Recipes

panic Documentation

5.2.9 Generating Clock Signals
Playing with PollingPeriod, AlarmThreshold and AutoReset properties is possible to achieve an square signal that
keeps the alarm active/inactive at regular intervals.

CLOCK=NOT CLOCK

The AlarmThreshold applies to both activation and reset of the alarm, so it has to be added to the AutoReset period
to regulate the duty cycle. Keeping the PollingPeriod and AutoReset values very small will generate an accurate
frequency (do not expect high accuracy, that’s a trick for testing but not a proper signal generator).

My values for a 10 seconds alarm cycle are:

. code-block:: python

PollingPeriod = 0.1 AlarmThreshold = 50 AutoReset = 0.0001

If you want a more accurate alarm, you can also use the NOW() function. This example generates a switch every
second

CLOCK = NOW () %$2<1
PollingPeriod=1
AlarmThreshold-1

5.3 AlarmStates

Contents

e AlarmStates
— State transitions

— Disabled States

— IEC 62682: AlarmStates Definition and related Actions

5.3.1 State transitions

Alarm States and Severities are defined in panic.properties module.
With PyAlarm > 6.1; GUI will read the current Alarm state from the AlarmList attribute.
For compatibility with older versions, the events of ActiveAlarms will be used instead:

* If ActiveAlarms doesn’t cotain tag, alarm.active will be 0, state = NORM

* Activealarms contains tag, alarm.active = activealarms timestamp, state = ACTIVE

» ActiveAlarms is None or Exception, alarm.active will be set to -1. state = ERROR

5.3.2 Disabled States

Their meanings are:

* OOSRYV = Device server is Off (not exported), no process running

5.3. AlarmStates 23

panic Documentation

* DSUPR = Enabled property is False
e SHLVD = Alarm is listed in DisabledAlarms attribute (temporary disabled)

* ERROR = Device is alive but the alarm is not being evaluated (exported=1 and thread dead or exception).

5.3.3 IEC 62682: AlarmStates Definition and related Actions

Different annunciators can be setup for each State change
Reset() can be automatic or forced to be manual
Reminder() : Alarm still ACTIVE, additional action can be configured

RTNUN : Condition recovered (but not Reset) Alarm ACTIVE : (UNACKED) Alarm ACKED : (action taken by
operator) RTNUN: return to NORM NORM: after Reset() or not triggered

First peaks ignored if (t < polling*AlarmThreshold)

SHLVD, DSUPR, OOSRV: Unactive states.

SHELVED for temporary disabling,

DSUPR by process condition,

OOSRY is permanent (device disabled).

All of them are controlled by the Enable/Disable states/commands of PyAlarm.
In addition, PANIC adds ERROR State to raise problems with Tango devices.

5.4 Hierarchies In Alarms

Contents

e Hierarchies In Alarms
— TOP/BOTTOM
— Alarm GROUP

Future Releases

5.4.1 TOP/BOTTOM

The TOP/BOTTOM just provides a filter for finding alarms where the value of another alarm is used directly in the
formula. It is case sensitive, so you can use lower/upper case to show/hide alarms in these filters.

To use hierarchies, alarms shall be written using the result of previous ones:

GAB1 = any ([t >5 for t in FIND (tcl:10000/LMC/CO01/GAB/*)])
GAB2 = any ([t >5 for t in FIND(tcl:10000/LMC/C02/GAB/x)1])
GAB_ALL= GABl or GAB2

OTHER = tcl:10000/LMC/C02/0Other/State != ON

CAPITAL = GAB_ALL or OTHER

Then, the filter by hierarchy will return:

24 Chapter 5. PANIC Recipes

panic Documentation

TOP (alarms that depend on others): CAPITAL, GAB12
BOTTOM (alarms isolated or referenced from others): OTHER, GAB_ALL, GABl, GAB2

In this case GAB_ALL appears in both lists; to avoid that just rewrite it using lower case attribute names:

’GAB_ALL = any (FIND('1lmcl1:10000/1mc/alarms/01/gab*"))

Now you should have only “CAPITAL” as TOP Alarm.

You can reproduce this behaviour from the api calling:

’panic.AlarmAPI().filter_hierarchy('TOP')

5.4.2 Alarm GROUP

For an expression matching multiple alarms or attributes, GROUP returns a new formula that will evaluate to True if
any of the alarm changes to active state (.delta) or matches a given condition:

GROUP (ALARM1, ALARM2, ALARM3)

Thus, GROUP will be activated when any of the three alarms switches to active; and immediately reset to wait for the
next change. In this way you get a notification for any new activation of the three alarms.

NOTE: BY DEFAULT IS NOT LIKE any(FIND(*)); it will react only on change, not taking in account previous
states!

NOTE2: you must tune your PyAlarm properties to have AlarmThreshold = 1 and AutoReset <= 3 to take profit of
this feature.

NOTE3: The GROUP activation will be just a peak when using .delta (default); take this in account when setting up
several levels of alarms as fast peaks may not be noticed if higher level alarms have long thresholds.

It uses the read_attribute schema from TangoEval, thus using .delta to keep track of which values has changed. For
example, GROUP(test/alarms/*/TEST_[ABC]) will be replaced by:

any ([t.delta>0 for d in FIND (test/alarms/+/TEST_[ABC].all)])

But, as regular expressions may trigger unexpected results, the syntax with explicit ALARM names is prefered.

The GROUP macro can be called with one or several expressions separated by commas and a condition separated by
semicolon:

’GROUP(expressionl[,expressionZ;condition)

Expressions may contain a device name or not. If no device name is passed then it will search for it in the alarm list:

expression=[a/dev/name*/]attributex

Thus, a valid GROUP expression is:

’ GROUP (LOCAIL_ALARMI1,t01:10000/an/alarm/dev/ALARM2)

Or
GROUP(LOCAL_ALARM1,t01:10000/an/alarm/dev/ALARM?2;x>=1)

In the first case you’ll get a peak when any of them changes from O to 1; in the second case you’ll get if any of them
is already on 1 (so a change in the second alarm will not trigger a second peak).

5.4. Hierarchies In Alarms 25

panic Documentation

Future Releases

In future releases the GROUP macro will be capable of evaluating any tango attribute and not only alarms. As of 6.0
this feature is not yet supported

If the condition is empty then PyAlarm checks any .delta != 0. It can be modified if the formula contains a semicolon

6,9

;7 and a condition using ‘X’ as variable; in this case it will be used instead of delta to check for alarm:

’GROUP(blO9/vc/vgctf*/p[12];x>le75) => [x>1le-5 for x in FIND (b109/vc/vgct—+/p[12])]

5.5 Special Alarm Recipes

5.5.1 Special keys used in Alarm formulas

* DEVICE: PyAlarm device name

¢ DOMAIN,FAMILY,MEMBER: Parts of the device name
* ALARMS: Alarms managed by this device

* PANIC: API containing all declared alarms

* t: time since the device was started

e T(...): string to time

e str2time(...): string to time

* now, NOW(): current timestamp

* DEVICES: instantiated devices

* DEV(device): DeviceProxy(device)

* NAMES(expression’): Finds all attributes matching the expression and return its names.
* CACHE: Saved values

* PREV: Previous values

* READ(attr): TangoEval.read_attribute(attr)

» FIND(‘expression’): Finds all attributes matching the expression and return its values.

5.5.2 Expiration Date

Disabling or re-enabling after a given date
A temporal condition can be achieved using the T() macro in the formula.

To disable an Alarm after a given date:

’T() < T('2013-04-23') and D/F/M.A > V1

To re-enable it after a maintenance period:

’T() > T('2013-04-23') and D/F/M.A > V1

26 Chapter 5. PANIC Recipes

panic Documentation

5.5.3 Accessing PyAlarm Values CACHE

The PyAlarm CACHE dictionary contains the last values stored for each tango attribute that appeared in the formulas.
The size of cache is AlarmTrheshold + 1

Usage:

PASS_BY_0O=[(k,v.time.tv_sec,str(v.value)) for k,t in CACHE.items () for v in t if v.
—value==0]

This will trigger alarm if ALL values in the cache are equal, it is NOT the same as Delta because it checks only the
first and last values:

not (lambda l:max(l)-min(l)) ([v.value for v in CACHE['wr/rf/circ-1/heartbeat']])

5.5.4 Clock: Alarm triggered by time

This alarm will be enabled/disabled every 5 seconds.

First, create a new PyAlarm device:

import fandango as fn
fn.tango.add_new_device ('PyAlarm/Clock', 'PyAlarm', '"test/pyalarm/clock")

Add the new alarm (formula will use current time to switch True/False very 5 seconds)

from panic import AlarmAPI
alarms = AlarmAPI ()
alarms.add(device="'test/pyalarm/clock',tag="CLOCK', formula="NOW()%10<5")

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor ('test/pyalarm/clock') .start_servers (host="'your_hostname')

Then, configure the device properties to react every second for both activation and reset:

dtest = alarms.devices|['test/pyalarm/clock']
dtest.get_config()

dtest.config['Enabled'] =1
dtest.config['AutoReset'] = 1
dtest.config['AlarmThreshold'] = 1

dtest.config['PollingPeriod'] = 1
alarms.put_db_properties (dtest.name,dtest.confiqg)
dtest.init ()

This is the result you can expect when plotting test/pyalarm/clock/CLOCK in a taurustrend:

SINIRIBIRIE

5.6 Exception Management

Alarm properties that control if exceptions trigger alarms or not ...

5.6. Exception Management 27

panic Documentation

‘RethrowState’: [PyTango.DevBoolean, “Whether exceptions in State reading will be rethrown.”, [True
]],#Overriden by panic.DefaultPyAlarmProperties

‘RethrowAttribute’: [PyTango.DevBoolean, “Whether exceptions in Attribute reading will be
rethrown.”, [False]], #Overriden by panic.DefaultPyAlarmProperties

‘IgnoreExceptions’: [PyTango.DevBoolean, “If True unreadable values will be replaced by None in-
stead of Exception.”, [True |],#Overriden by panic.DefaultPy AlarmProperties

5.7 Grouping Alarms

The proper way is (for readability I use upper case letters for alarms):

ALARM_I: just/my/tango/attribute_1 ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2
or:

ALARM_1_OR_2: any((ALARM_1, ALARM_2))
or:

ALARM_ANY: any(FIND(my/alarm/device/ ALARM_*))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

5.8 How PyAlarm Device Server Works

This document tries to summarize how PyAlarm processes alarms and executes its actions. A full explanation of alarm
syntax and each property is available in the PyAlarm user guide, but here I provide a summary for convenience.

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device will share
a common evaluation environment determined by PyAlarm properties.

Contents

* How PyAlarm Device Server Works
— The AlarmAPI
— The updateAlarms thread

* AlertOnRecovery and AlarmReset

— The TangoEval engine

28 Chapter 5. PANIC Recipes

panic Documentation

5.8.1 The AlarmAPI

This object encapsulates the access to the alarm configurations database. Tango Database is used by default, all
alarm configurations are stored as device properties of each declared PyAlarm device (AlarmList, AlarmReceivers,
AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

5.8.2 The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod. All Enabled alarms will be evaluated
at each cycle; and if evaluated to a True value (understood as any value not in (0,”*“,None,False,[],{ })).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active. Then
the PyAlarm will process all elements of the AlarmReceivers list.

AlertOnRecovery and AlarmReset
Whenever an alarm formula becomes True; a counter starts to increase until it reaches the AlarmThreshold value,
becoming an active alarm.

This counter is kept at AlarmThreshold value and starts decreasing once the formula is no longer True. If the counter
reaches O (its minimum value) the alarm will be still active but its new state will be RECOVERED, an email will be
sent to receivers if AlertOnRecovery property is True.

Then, if the AlarmReset value (in seconds) is distinct from 0, a time count starts from the point of RECOVERY. If
there’s no change in the alarm state during this time count, the alarm will be automatically RESET (notifying receivers
or not depending on configuration).

So, if you need an alarm to have a fast recovery keep in mind that you’ll have to apply a delay equal to AlarmThresh-
old+PollingPeriod to the value that you have set as AutoReset.

5.8.3 The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value. It will also provide
several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1. This cache allows
to create alarms using .delta or inspecting the cache for specific behaviors.

5.9 PANIC Setup

by Sergi Rubio — 2006, 2016

Contents
* PANIC Setup
— Description

— Launch your PANIC System in few steps

* Dependencies

5.9. PANIC Setup 29

panic Documentation

Get the code

*

* Setup your Tango database

* Run the panic application and configure your Alarms

* FestivalDS, Speech and pop-ups

5.9.1 Description

The Package for Alarms and Notification of Incidents from Controls
PANIC Alarm System is a set of tools (api, Tango device server, user interface) that provides:
* Periodic evaluation of a set of conditions.
* Notification (email, sms, pop-up, speakers)
» Keep a log of what happened. (files, Tango Snapshots)
* Taking automated actions (Tango commands / attributes)
* Tools for configuration/visualization.
Other Documentation in this same repository
* PANIC presentation at PCAPAC*14: Panic Talk at PCAPAC‘14
* The Panic python API: PanicAPLrst
* The PyAlarm User Guide: PyAlarmUserGuide.rst

* The Panic UI manual: panicdoc.html

5.9.2 Launch your PANIC System in few steps

Dependencies

You must have PyTango + Tango + MySQL up and running and your TANGO_HOST and PYTHONPATH environ-
ment variables properly set.

PyTango is available at PyPI: https://pypi.python.org/pypi/PyTango

Get the code

ALL OF THIS IS DEPRECATED; GET THE PACKAGES FROM https://github.com/tango-controls IN-
STEAD

Fandango library (functional tools for tango) is required to be in your PYTHONPATH:

svn co https://tango-cs.svn.sourceforge.net/svnroot/tango-cs/share/fandango/trunk/
—fandango fandango

You can download PyAlarm and the panic api from tango-ds at sourceforge:

svn co https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/SoftwareSystem/PyAlarm/
—trunk

The PANIC User Interface is available in the /clients branch:

30 Chapter 5. PANIC Recipes

https://pypi.python.org/pypi/PyTango

panic Documentation

svn co https://svn.code.sf.net/p/tango-ds/code/Clients/python/Panic/trunk

Setup your Tango database

Create your devices from a python console (or Jive):

import PyTango
db = PyTango.Database ()

def add_new_device (server,klass,device) :
dev_info = PyTango.DbDevInfo ()

dev_info.name = device
dev_info.klass = klass
dev_info.server = server
get_database () .add_device (dev_info)

#Create a PyAlarm device
add_new_device ('PyAlarm/1"', '"PyAlarm', "test/alarms/1")

#I'11 add a simulator, but you can't use TangoTest or whatever device you want:
add_new_device ('PySignalSimulator/1', 'PySignalSimulator', 'test/sim/1")
db.put_device_property ('test/sim/1', {'DynamicAttributes':['A=t%$100"']})

From shell, launch your PyAlarm and Simulator devices:

python PyAlarm/PyAlarm.py 1 &
python PySignalSimulator/PySignalSimulator.py 1 &

Create a TEST_ALARM using the API:

import panic

alarms = panic.api()

alarms.add ('TEST_ALARM', formula="' (test/sim/1/A%15 > 5)',description="'test', receivers=
—'your@mail')

Run the panic application and configure your Alarms

python Panic/gui.py

See the application manual: http://plone.tango-controls.org/tools/panic/panic-ui/

If you want to see faster changes in the alarm cycle try to set the following configuration values (Tools->Adv.Config):

PollingPeriod = 1
AlarmThreshold = 1
AutoReset = 5
Notification Services

The syntax for sending an email (from linux, you’ll need the “mail” command available in the system, from windows
you’ll have to set as receiver a command from a device running in a linux machine):

5.9. PANIC Setup 31

http://plone.tango-controls.org/tools/panic/panic-ui/

panic Documentation

DeviceProxy ("your/alarm/device") .command_inout ("SendMail", ["Bonjour, \n\nthis is a_,
—test message\n\nau revoire","RE: testing", "your—-name@tango-controls.org"])

The other command we have for notification is SendSMS; but it requires our smslib.py file that is specific to our SMS
provider (it uses http transactions to send the messages). If you’re interested on it you’ll have to write your own
smslib.py file to use it.

FestivalDS, Speech and pop-ups

There’s another notification device you can use, the FestivalDS. It provides speech synthesizing and pop-ups in a linux
environment (it requires “festival” and “libnotify-bin” linux packages):

https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/InputOutput/FestivalDS/trunk

The commands are:

Play(string): speech to speakers

Beep () : beep!

Play_sequence (string): 1t just makes some beeps before and after the speech
PopUp (title, text, [seconds]): shows a pop-up with title/text for the given time

And that’s all regarding our current notifiers, for database we don’t have anything yet, as we use the device properties
to store all the data. You’ll find more information in the PyAlarm user guide.

5.10 Exception Management in Panic Alarms

The exception management will be done using the _raise=RAISE argument of the TangoEval.eval method.
Three properties control if exceptions will enable the alarm or will be simply ignored.

IgnoreExceptions if False then all exceptions will be registered as FailedAlarms and the PyAlarm
will change to FAULT whenever an exception is encountered. If no rethrow option is active,
FailedAlarms will be displayed in grey in AlarmGUI as “disabled”.

RethrowAttribute if True, any exception in the formula will set the alarm as active. PyAlarm state will
change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

RethrowState if True, only alarms reading State attributes will be activated by exception. PyAlarm state
will change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

So, in case of having an alarm reading a faulty attribute, the status of the alarm will be:
DISABLED If IgnoreExceptions=False and RethrowAttribute=False
NOT ACTIVE If IgnoreExceptions=True and RethrowAttribute=False
ACTIVE If IgnoreExceptions=False and RethrowAttribute=True
ACTIVE If IgnoreExceptions=True and RethrowAttribute=True

5.11 Using the PANIC python API

32 Chapter 5. PANIC Recipes

panic Documentation

Contents

» Using the PANIC python API
The Panic Module

Browsing existing alarms

Adding / Removing alarms

Modifying alarms

Modifying a receiver in all alarms

5.11.1 The Panic Module

Panic contains the python AlarmAPI for managing the PyAlarm device servers from a client application or a python
shell. The panic module is part of the Panic bliss package.:

import panic
alarms = panic.api ()

5.11.2 Browsing existing alarms

The AlarmAPI is a dictionary-like object containing Alarm objects for each registered Alarm tag. In addition the
AlarmAPI.get method allows caseless search by tag, device, attribute or receiver:

alarms.get (self, tag='', device='"', attribute='"', receiver='")

alarms.get (device="boreas')
Oout [232]:
[Alarm (BL29-BOREAS_STOP:The BakeOut controller has been stop),
Alarm (BL29-BOREAS_PRESSURE_1:),
Alarm (BL29-BOREAS_PRESSURE_2:),
Alarm (BL29-BOREAS_START: BL29-BOREAS bakeout started
-1

alarms.get (receiver='eshraqg')

Oout[234]:

[Alarm (RF_LOST_EUROTHERM:),

Alarm (OVEN_COMMS_FAILED:Oven temperatures not updated in the last 5 minutes),
Alarm (RF_PRESSURE:The pressure in the cavity exceeds Range),

Alarm (OVEN_TEMPERATURE:The Temperature of the Oven exceeds Range),

Alarm (RF_EUROTHERM:) ,

Alarm(RF_LOST_MKS:),

Alarm (RF_TEMPERATURE_MAX2:),

.

alarms['RF_LOST_MKS'].receivers
Out[237]: '"$SRUBIO, SHRAQ, $VACUUM, $LOTHAR, $JNAVARRO'

5.11.3 Adding / Removing alarms

The add/remove methods take care of properties modification:

5.11. Using the PANIC python API 33

panic Documentation

alarms.add('RF_ON_FIRE', 'rf/ct/alarms', formula='rf/ct/plc-01/temperature>1000.",
—message="'FIRE! ', receivers="rflcells.es,plclcells.es")

alarms.remove ('RF_ON_FIRE")

5.11.4 Modifying alarms
Each Alarm object contains strings with its configuration, if you modify it you must call Alarm.write() method to
update the alarm device. An Alarm.rename() method is also available.

In [235]: alarms[‘RF_LOST_MKS’].device Out[235]: ‘sr/rf/alarms’

In [236]: alarms[‘RF_LOST_MKS’].formula Out[236]: ‘SR/RF/VGCT-01/State==UNKNOWN or
SR/RF/VGCT-02/State==UNKNOWN"’

In [237]: alarms[‘RF_LOST_MKS’].receivers Out[237]: ‘%SRU-
BIO,%ESHRAQ,% VACUUM,%LOTHAR,%JNAVARRO’

In [238]: alarms[‘RF_LOST_MKS’].write()

5.11.5 Modifying a receiver in all alarms

And a fast way for updating alarm receivers:

[a.replace_receiver ('$DFERNANDEZ', "$SRUBIO') for a in alarms.get (receiver='fernandez
—"')]

5.12 PanicAdminUsers property

Contents

* PanicAdminUsers property

The PanicAdminUsers property will contain all users enabled to modify an alarm.
Although, any user identified as an email receiver of an alarm will be allowed to change it.
The propery is check from the get_admins_for_alarm() method in AlarmAPI.
The method will be used to call the setAllowedUsers() of a validator plugin.
The methods that the i*ValidatedWidget decorator requires of a validator are:

* setLogging()

¢ setAllowedUsers()

* setLogMessage()

e exec_()

User validation in the GUI will be kept for consecutive actions as long as the allowed users list for each action doesn’t
change. If a new action is required on an Alarm with different receivers, the login will be asked again.

The login will be kept for a time defined by PyAlarm.PanicUserTimeout property. This time is 60 seconds by default.

34 Chapter 5. PANIC Recipes

panic Documentation

5.13 PyAlarm Startup Modes

The PyAlarm Startup is controlled by StartupDelay and Enabled properties.

StartupDelay will put the PyAlarm in PAUSED state after a restart; to not start to evaluate formulas immediately but
after some seconds, thus giving time to other devices to start.

The Enabled property will instead control the notification actions:
* If False, no notification will be triggered.
e If True, all notifications can be sent once StartupDelay has passed.
* If a Number is given, all notifications triggered between startup and t+Enabled will be ignored.

* Enabled> (AlarmThreshold+PollingPeriod): “Silent restart’, activates the Alarms that were pre-
sumably active before a restart; but do not retriggers the notifications.

Enabled = 120 is the typical case; not triggering notifications until the device has been running for at least 3
minutes.

If Enabled = Falseorwhilet < Start+Enabled the PyAlarm State will be DISABLED.

5.14 PyAlarm timing configuration

* StartupDelay: the device will wait before starting to evaluate the alarms (e.g. giving some time to the system to
recover from a powercut).

* Enabled: if False or O the PyAlarm it equals to disabling all alarm actions of the device; if it is True the behavior
will be the normal expected; if it has a numeric value (e.g. 120) it means that the device will evaluate the alarms
but not execute actions during the first 120 seconds (thus alarms can be activated but no action executed). It is
used to prevent a restart of the device to re-execute all alarms that were already active.

e EvalTimeout: The proxy timeout used when evaluating the attributes (any read attribute slower than timeout
will raise exception).

* AlarmThreshold: number of cycles that an alarm must evaluate to True to be considered active (to avoid alarms
on “glitches”).

* RethrowAttribute/RethrowState: Whether exceptions on reading attributes or states should be rethrown to higher
levels, thus causing the alarm to be triggered. By default alarms are enabled if an State attribute is not readable
(RethrowState=True), but when a numeric attribute is not readable its value is just replaced by None (RethowAt-
tribute=False) and the formula evaluated normally.

* Reminder: A new email will be sent every XX seconds if the alarm remains active. When AlertOnRecovery is
True an email will be sent also every time when the formula result oscillates from True to False.

e UseProcess: This is an experimental feature, like UseTaurus and others. In general, I advice you to not modify
any parameter that is not detailed in the PyAlarm user guide as you may obtain unexpected results. Some
parameters are used to test new features still under development and their behavior may vary between commits.

Regarding actions on recovery ... this option is planned but not yet fully available. Actually just emails are sent when
AlertOnRecovery is True. This feature may be implemented in the next 6 months or so but the syntax is still to be
decided.

5.15 Testing your PyAlarm installation

This script will check the current performance of your PyAlarm devices:

5.13. PyAlarm Startup Modes 35

panic Documentation

’> TANGO_HOST=your_hostname:10000 python panic/extra/report.py check

5.16 PANIC Receivers, Logging and Actions

Contents

* PANIC Receivers, Logging and Actions
Alarm Receivers

SMS / Mail Config

Global Receivers

Logging
* Local LogFile
* Remote LogFile
* Using SNAP database

Triggering Actions from PyAlarm

5.16.1 Alarm Receivers

Allowed receivers are email, sms, action and shell commands.

5.16.2 SMS / Mail Config

These CLASS properties will control how SMS and Mail is configured:
SMSConfig
SMSMaxLength
SMSMaxPerDay
FromAddress
MailMethod

5.16.3 Global Receivers

The PyAlarm class property “GlobalReceivers” allows to set receivers that will be applied to all Alarms; independently
of the device that is managing them.

The syntax is:

GlobalReceivers
{regexp}:{receivers}
.*:oncall@facility.dom

36 Chapter 5. PANIC Recipes

panic Documentation

5.16.4 Logging

Alarm logging can be managed in three ways: local logs, remote logs via FolderDS or Snapshoting.

All the logging methods support defined variables (SALARM, $DATE, $DEVICE, $SMESSAGE, $VALUES, §...)

Local LogFile

Simply set the LogFile property to your preferred local file path:

LogFile = /tmp/pyalarm/$SNAME_SDATE_SMESSAGE.log

Remote LogFile

You can use the fandango.FolderDS device to specify a remote logfile destination on the LogFile property:

LogFile = tango://[folderds/device/name]/[logfile_name]
LogFile = tango://sys/folder/panic-logs/$NAME_SDATE_SMESSAGE.log

You can have both local and remote logging by setting LogFile to a local file and adding an ACTION receiver:

LogFile = /tmp/pyalarm/S$SNAME_SDATE_SMESSAGE.log

AlarmReceivers = ACTION (alarm:command, controls02:10000/test/folder/tmp-folderds/
—SaveText,
'SNAME_$SDATE_SMESSAGE.txt', "SREPORT")

FolderDS documentation: https://github.com/tango-controls/fandango/blob/documentation/doc/devices/FolderDS.rst

Using SNAP database

This database logging will save the alarm state and all associated attributes every time that the alarm is activated/reset.
You should have configured previously an Snapshoting Database (java/mysql service by Soleil).
Then you have to:

* Set the CreateNewContexts property of PyAlarm to True (it will automatically create a new context on alarm

triggering)

* Or create manually a new context in the database using Bensikin.

 Set UseSnap=True to trigger snapshots for all alarms

e Or simply add the SNAP receiver.

Creating a context manually instead of doing it with PyAlarm may allow you to store Tango attributes that do not
appear in the formula, thus enabling a sort of alarm-triggered archiving mode.

5.16.5 Triggering Actions from PyAlarm

See basic details on the user guide:
https://github.com/tango-controls/PANIC/blob/documentation/doc/Py AlarmUserGuide.rst#id20

Here you have some more examples:

5.16. PANIC Receivers, Logging and Actions 37

https://github.com/tango-controls/fandango/blob/documentation/doc/devices/FolderDS.rst
https://github.com/tango-controls/PANIC/blob/documentation/doc/PyAlarmUserGuide.rst#id20

panic Documentation

Send an email (equivalent to just $MAIL:address@mail.com)
%$SENDMAIL:ACTION (alarm:command, lab/ct/alarms/SendMail, $SDESCRIPTION, SALARM,
—address@mail.com)

Reset another alarm, DONT USE [] TO CONTAIN ARGUMENTS!
$RESET:ACTION (alarm:command, test/pyalarm/logfile/resetalarm, 'TEST', ' SNAME_SDATE_
<SDESCRIPTION"')

Reload another device
$INITLOG:ACTION (alarm:command, test/pyalarm/logfile/init)

Write a tango attribute
SWRITE:ACTION (alarm:attribute, sys/tg_test/1l/string_scalar, '$SNAME_S$DATE_SVALUES')

Execute a command in another tango host

in this example a FolderDS saves the alarm log

$LOG:ACTION (alarm:command, controls02:10000/test/folder/tmp-folderds/SaveText, ' SNAME_
< SDATE_S$MESSAGE.txt"', 'SREPORT')

Then declare the AlarmReceivers like:

ACTION (alarm:command, mach/dummy/motor/move, int (1), int (10))
ACTION (reset:attribute, mach/dummy/motor/position, int (0))

The first field is one of each PyAlarm. MESSAGE_TYPES:

ALARM
ACKNOWLEDGED
RECOVERED
REMINDER
AUTORESET
RESET
DISABLED

Auvailable keywords (managed by PyAlarm.parse_devices()) in ACTION are:

STAG / SNAME / SALARM
$SDEVICE

SDATE / S$SDATETIME
SMESSAGE

SVALUES

SREPORT

SDESCRIPTION

5.17 PyAlarm Using Events With Taurus

5.17.1 Setting up a PyAlarm getting Tango events from Taurus
We will test events using the CLOCK alarm created in the previous recipe (polling should be enabled, this example
uses polling on CLOCK attribute at 10 ms):

https://github.com/tango- controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

Then, create a new PyAlarm device and the event-based alarm:

38 Chapter 5. PANIC Recipes

https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

panic Documentation

import fandango as fn
fn.tango.add_new_device ('PyAlarm/events', '"PyAlarm', "test/pyalarm/events')

from panic import AlarmAPI
alarms = AlarmAPI ()
alarms.add (device="test/pyalarm/events',tag="EVENTS', formula="'test/pyalarm/clock/clock

")

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor ('test/pyalarm/events') .start_servers (host='your_hostname')

Then, configure the device properties to read attributes using Taurus and react as fast as possible Taurus will take care
of subscribing to events and update cached values.

dtest = alarms.devices|['test/pyalarm/events']
dtest.config['UseTaurus'] = True
dtest.config['AutoReset'] = 0.05
dtest.config['Enabled'] = 10
dtest.config['AlarmThreshold'] = 1
dtest.config['PollingPeriod'] = 0.05
alarms.put_db_properties (dtest.name,dtest.confiqg)
dtest.init ()

This is the result you can expect when showing both alarm attributes (test/pyalarm/clock/clock and
test/pyalarm/events/events) in a taurustrend:

5.17.2 Is this approach really Event-Based?

Yes, but not asynchronously. PyAlarm will use Taurus to catch Tango Events and buffer them; but alarms are still
triggered by the internal polling thread of PyAlarm. It means that the PyAlarm.PollingPeriod property effectively
filters how often incoming events are processed.

But, delegating event collection to Taurus allows to not execute read_attribute in the polling thread; allowing to very
small PollingPeriod values (10-20 ms)

As seen in this picture, it allows to have a very fast reaction from the Alarm attributes respect to the trigger:

This approach, however, is costly in terms of cpu usage if using polling periods below 100 ms. A pure-asynchronous
event implementation of the PyAlarm is still pending.

5.17. PyAlarm Using Events With Taurus 39

panic Documentation

40 Chapter 5. PANIC Recipes

CHAPTER O

Indices and tables

* genindex
* modindex

e search

41

	PANIC Description
	Changelog
	Installing PANIC on a New System
	Dependencies
	Run the GUI and create a PyAlarm
	Run the PyAlarm Server

	PyAlarm Device Server User Guide
	Description
	Internal Structure
	Alarm Syntax Recipes
	PyAlarm Device Properties
	Device Server Example
	Mail Messages

	PANIC Recipes
	Alarms Distribution
	Alarm Formulas Examples
	AlarmStates
	Hierarchies In Alarms
	Special Alarm Recipes
	Exception Management
	Grouping Alarms
	How PyAlarm Device Server Works
	PANIC Setup
	Exception Management in Panic Alarms
	Using the PANIC python API
	PanicAdminUsers property
	PyAlarm Startup Modes
	PyAlarm timing configuration
	Testing your PyAlarm installation
	PANIC Receivers, Logging and Actions
	PyAlarm Using Events With Taurus

	Indices and tables

