Tango Controls Documentation
Release 9.3.4

Tango Community (CC BY 4.0)

Mar 30, 2023

Contents

Welcome to Tango Controls documentation! 3
1.1 How this documentation is organized e e e e 3
1.2 Indicesand tables e e e e e e e 4
Authors 5
2.1 Acknowledgements L e e e e e e e e e e e e 6
Overview 7
3.1 Introduction L. e e e e e e e e e e e e e e e 8
3.2 Overviewof Tango Controls e 8
3.3 Simplified Tango Device Server Model Lo L. 9
34 BCOSYSIBIM v i i e e e e e e e e e e e e e e 11
3.5 HIStory o e 11
Installation 13
A1 OVEIVIEW . o v v v o e 13
42 Source Code e e 16
4.3 Long Term Support Versions v v v v v vt e e e e e e e e e e e e e e e e e 17
44 LINUX « o vt ot e 17
4.5 WINdOWS e e e e e e 21
4.6 Raspberry Pi 30
477 Amazon Cloud e e e e e e e e 31
4.8 Virtual Machine e e e e e e e e 35
4.9 PyTango and Taurus on Windows o o o i e e e e e e e 64
4.10 Binary packages e e e e e e e 64
4.11 Patches e e e e e 65
Getting Started 67
5.1 First steps with Tango Controls o o i e e e e e e 67
5.2 End-user applications guide e 68
5.3 Howtodevelop for Tango Controls e 68
5.4 Administration applications guide L L e e e e e 84
Developer’s Guide 85
6.1 OVEIVIEW o it e e e e e e e e e e e e e e e e e e e 85
6.2 General guidelines L e e e e e e 85
6.3 10 things you should know about CORBA, 88

6.4 Tango CLent it i e e e e e e e e e e e e e e

6.5 DevVICE SEIVEIS v v i it e e e e e e e e e e e
6.6 Debuggingand Testing o o i e e e e e e e e e e e e e
6.7 Advanced L e e
6.8 Tango Core C++ Classes Reference Documentation
6.9 Contributing e e e e
7 Tools and Extensions
7.1 Themostpopulartools e e
72 Bullt-Intools e e e e e e
7.3 GUIbuilding o e e e e e e e
T4 Webtools o e e e e e e
7.5 Archiving L L e e
7.6 Bindings L e e e e e
TT OthertoolS o e e e e
8 Administration
.1 OVEIVIEW o o e e e e s
8.2 Deployment L e e e e e e e e
8.3 SeIVICES i e e e
8.4 MaintenancCet i e e e e e e e e e e e e e e e e e
9 Tutorials and How-Tos
0.1 Tutorials e e e e e e e
0.2 HOW-TOS e e e e e e e e e
9.3 Tutorials for adminiStrators e e e e e e e e e e e e e e e e
9.4 HOW-TOs for adminiStrators v v v v v v e e e e e e e e e e e e e e e e
9.5 HOW-TOs fordevelopers i i ittt it e e e e e
10 Reference
10.1 MapKey o e e e e
10.2 GlOSSArY . . . o v o e e e e e e e e e e e e e e e e e e
10.3 Bibliography e e e e e e e e
11 Contents for administrators
12 Contents for developers
13 Contents for users
Bibliography
Index

365
365
365
491
492
496
564
566

567
567
567
580
635

637
637
642
721
721
721

723
723
724
726

727

729

731

733

735

Tango Controls Documentation, Release 9.3.4

TANG

Intended audience: all

Contents 1

http://www.tango-controls.org

Tango Controls Documentation, Release 9.3.4

2 Contents

CHAPTER 1

Welcome to Tango Controls documentation!

Intended audience: all

1.1

How this documentation is organized

If you identify yourself with one of the following roles you may directly use related links:

End user Index | End-user applications guide
Beginner Index | First steps with Tango Controls
Developer Index | How to develop for Tango Controls
Administrator | Index | Administration applications guide

The documentation is organized in the following categories (some of them overlap):

Overview will give you a quick overview of what Tango Controls is, its origins and who uses it. Start reading
here.

First steps will lead you through getting started with Tango Controls. This category includes an overview of
Tango Controls concepts, procedures for installation and starting the system as well as Getting started tutorials.

Developer’s Guide documents the API and information for Developers needed for development of Device
Servers and client applications.

Administration section is important mainly for System Administrators. However, it may provide some in-
formation for both End Users and Developers, too. It contains useful information on Tango Controls system
deployment, startup and maintenance.

Tools and extensions. Tango comes with rich set of command line tools, graphical toolkits and programming
tools for management, developing graphical applications and connecting with other systems and applications.
All, End Users, Developers and System Adminstrators should take a look at the toolkits’ manuals.

Tutorials and HOWTOs give step by step guidance and teach you how to work with Tango Controls.

Table of Contents provides access to all documents.

Tango Controls Documentation, Release 9.3.4

* If you want to contribute to the documentation please read the document How fo work with Tango Controls
documentation and the Documentation workflow tutorial .

1.2 Indices and tables

* Table of Contents
* genindex

* modindex

* search

* Glossary

4 Chapter 1. Welcome to Tango Controls documentation!

CHAPTER 2

Authors

Intended audience: all

Good documentation needs dedicated authors who spend lots of time writing and reading text instead of code. This
labour of love is only rarely appreciated by readers. This section lists the numerous contributors to the Tango doc-
umentation. If you are reading this section don’t hesitate to send them some positive thoughts and thanks for their
“labour of love” right now!

The following people have contributed to the Tango documentation over the years:

Gwenaelle Abeille - for writing the original JTango documentation

Reynald Bourtembourg - for writing the HDB++ documentation

Thomas Braun - for doing the first conversion of the Book to sphinx

Alain Buteau - for the guidelines documentation

Matteo di Carlo - for drawing the Device Server system model

Tiago Couthino - for writing the PyTango documentation and showing the way with Sphinx
Lukasz Dudek - for converting many documents to Sphinx and setting up CI

Piotr Goryl - for reformatting the documentation into Sphinx and documentation master
Lajos Fiilop - for the original layered maps

Andy Gé6tz - for contributing and motivating to have a complete Tango documentation

Stuart James - for editing and updating the layered maps

Igor Khokhrakiov - for writing the new version of JTango documentation, REST api, Amazon cloud etc

Nicolas Leclerq - for the Yat4Tango, bindings documentations

Olga Merkulova - for re-organising the documentation and writing getting started
Lorenzo Pivetta - for writing the HDB++ documentation

Faranguiss Poncet - for writing the ATK documentation

Jean-Luc Pons - for writing the Jive documentation

Tango Controls Documentation, Release 9.3.4

Sergi Rubio - for the Fandango and Panic documentation
Olivier Tachet - for the how to on installing Tango on a Raspberry Pi

Guidelines Team - the following people contributed to the device server guidelines: Alain Buteau, Jens Meyer,
Jean Michel Chaize, Emmanuel Taurel, Pascal Verdier, Nicolas Leclerq, M.Lindberg, Sebastien Gara, S. Minolli,
and Andy Gotz.

First Write-the-Doc Team - the following people assisted to the first Write-the-Doc camp: Piotr Goryl, Olga
Merkulova, Lukasz Zytniak, Lukasz Dudek, Matteo di Carlo, Matteo Canzari, Igor Khokhrakiov, Reynald
Bourtembourg, Jean-Michel Chaize, Stuart James and Andy Gotz

Second Write-the-Doc Team - the following people participated in the second Write-the-Doc camp: Reynald
Bourtembourg, Thomas Braun, Sébastien Gara, Philippe Gauron, Andrew Gotz, Piotr Goryl, Anton Joubert,
Krystian Kedron, Igor Khokhrakiov, Grzegorz Kowalski, Olga Merkulova, Guillaume Mugerin, Lorenzo Pivetta
and Sergi Rubio

Emmanuel Taurel - for writing the first Tango documentation (The Book) single handedly!
Pascal Verdier - for writing the Pogo and Astor documentation

Lukasz Zytniak - for converting many documents to Sphinx

Please add your name to the above list if you have contributed to the Tango Documentation.

A big Thank You to all of you!

2.1

Acknowledgements

The current Tango documentation would not be possible without the help of:

Sphinx - a big thank you especially to Georg Brandl for inventing Sphinx (by chance Georg is also a member
of the Tango community)

Github - for hosting the tango-doc repository
Travis - for the continuous integration of tango-doc
Read-the-docs - for formatting and hosting the online documentation

Tango Collaboration - who sponsored the first Tango Write-the-docs camp and the conversion to Sphinx

TANGAY.

Chapter 2. Authors

http://www.tango-controls.org

CHAPTER 3

Overview

Intended audience: beginners, all

Contents:

Tango Controls Documentation, Release 9.3.4

3.1 Introduction

Intended audience: beginners, developers, administrators, users, Programming language: all

Tango Controls is a toolkit for building distributed object based control systems. Distributed objects are an implemen-
tation of the Actor model. Actors are primitives of concurrent computation which were proposed in the 70s but have
gained renewed interest with massively parallel architectures, IoT, cloud computing etc.

The distributed object in Tango Controls is called a device and is created as an object in a container process called a
device server. The device server implements the network communication and links to the configuration data base and
clients. Tango device servers and clients can be written in Python, C++ or Java. Tango comes with a full set of tools
for developing, supervising, monitoring and archiving.

The Tango Controls toolkit has been used to build the control systems of large and small physics experiments like
synchrotrons, lasers, wind tunnels and radio telescopes. Tango can be used for a single device which requires remote
control in a lab or on the internet. Tango can be used as a communication protocol for controlling anything remotely.
Tango is ideal for connecting things together and its uses are only limited by your imagination!

Are you ready to dance the TANGO ?

We are glad you are with us.

Please, look through the following presentations to get a first overview of the TANGO Control system.
¢ TANGO introduction
* Overview of the TANGO Control system
e TANGO basics, technical overview

Please, also, look on the Tango Controls web page

3.2 Overview of Tango Controls

Intended audience: beginners, developers, administrators, users

3.2.1 What is Tango Controls

Tango Controls is an object oriented, distributed control system framework which defines a communication protocol,
an Application Programmers Interface (API) and provides a set of tools and libraries to build software for control
systems, especially SCADA.

It is build around concept of devices and device classes. This is unique feature of Tango Controls and make it different
to other SCADA software which usually treats a controls system as a set of signals and read and write of process
values.

8 Chapter 3. Overview

https://en.wikipedia.org/wiki/Actor_model
http://www.tango-controls.org

Tango Controls Documentation, Release 9.3.4

Devices are created by device servers. Device servers are processes implementing set of device classes. Device
classes implement a state machine, command (actions or methods), pipes and attributes (data fields) for each class.
Each device therefore has state, zero or more commands, zero or more pipes and zero or more attributes. Device
classes are responsible for translating hardware communication protocols into Tango Controls communication. This
way you may control and monitor all your equipment like motors, valves, oscilloscopes, etc. Device classes can be
used to implement any algorithm or act as a mailbox to any other software program or system.

Tango Controls has been designed to manage small and large systems. Each system has a centralised (Mari-
aDB/MySQL) database. The database stores configuration data used at startup of a device server, and acts as name
server by storing the dynamic network addresses. The database acts as permanent store of dynamic settings which
need to be memorised. Each Tango Control system has a database and is identified by its 7ungo Host. A large system
can be made up of tens of thousands or devices (the limit has not been reached yet). Systems of systems are supported
by the protocol i.e. the API supports transparent access to devices from multiple systems.

Tango Controls communication protocol defines how all components of the system communicates with each other.
Tango uses CORBA for synchronous communications and ZeroMQ for asynchronous communication. The detail of
these protocols are hidden from the developer and user of Tango by the API and high level tools.

3.2.2 Tango Technologies

TANGO is based on the 21 century technologies :
¢ CORBA and ZMQ to communicate between device server and clients
¢ C++, Python and Java as reference programming languages
 Linux and Windows as operating systems
* Modern object oriented design patterns
* Naturally implements a microservices architecture
* Unit tested, continuous integration enabled
* Hosted on Github (https://github.com/tango-controls)

» Extensive documentation + tools, large community

3.2.3 Tango Community

Over the last 17 years that Tango exists over 40 small and large sites (see http://www.tango-controls.org/partners/)
have adopted Tango for their control system. Tango is now used to control not only accelerators but also experimental
lasers (ELI), wind tunnels (Onera), and most recently has been adopted by the world’s largest radio telescope as its
core control system (SKA).

3.3 Simplified Tango Device Server Model

Intended audience: beginners, developers, administrators, users

This document is directed to beginner developer.

3.3. Simplified Tango Device Server Model 9

https://github.com/tango-controls
http://www.tango-controls.org/partners/
https://eli-laser.eu/
http://www.onera.fr/en
http://skatelescope.org/

Tango Controls Documentation, Release 9.3.4

3.3.1 Primary Presentation

MNotation sysml
Block are concept

«blocks
Command

command | 0..*

ublocks
Device Server

device |1.*

T «blocks
Device ablocks
"";Ii':im pipe TANGO Class e deviceProperty DeviceProperty
0.+ class belongs ?;nr_l;:;m 0.®
1 member
attrioute |0..*
ablocks
Attribute avent mEI:lnEcnl:n
0
wblocks ablocks
State Status
3.3.2 Elements
BlockDescription
De- | Abstract concept defined by the TANGO device server object model; it

vice

can be a piece of hardware (an interlock bit) a collection of hardware (a screen attached to a stepper motor)
a logical device (a taper) or a combination of all these (an accelerator).

TAN
Clasg

(GBrom Object Oriented Programming concept, this is the main class that the developer has to implement

De-
vice-
Serve

The server (also referred as device server) is a process whose main task is to offer one or more services to
one or more clients. To do this, the server has to spend most of its time in a wait loop waiting for clients to

rconnect to it. The devices are hosted in the server process. A server is able to host several classes of devices.
In short, it is a process that export devices available to accept requests). Please refer also to the Glossary,
device server instance.

De-
vi-
ce-
Prop-
erty

Device specific configuration

At-
tribuf

See Glossary, attribute.
e

Pipe

See Glossary, pipe.

Event Refer to Events.

Com
mand

See Glossary.

State

The device state is a number which reflects the availability of the device.
Refer to Events

Sta-
tus

The state of the device as a formatted ascii string

10

Chapter 3. Overview

Tango Controls Documentation, Release 9.3.4

3.3.3 Attributes

Block | Attribute Description
Device | domain/family/member | To identify the device

3.3.4 Relations

Left Block Right Block | Multiplic- Description
ity
Device TANGO Class | 1 Every device belongs to a Tango class
Attribute Event 0..* An attribute can have more than one event associated
Device DeviceProp- 0..* A device can have more than one Device Property associated
erty
DeviceServer | Device 1.* Every Device server has many devices inside itself
TANGO Class | Attribute 0..* A TANGO Class can have more than one Attribute associated
TANGO Class | Command 0..* A TANGO Class can have more than one Command associated
TANGO Class | Pipe 0..* A TANGO Class can have more than one Pipe associated

3.4 Ecosystem

Intended audience: beginners, all

The Tango ecosystem offers a rich ecosystem for developers and clients alike. The ecosystem is best appreciated via
these maps which show what exists and where it is situated in the software stack. Use the map key to understand the
colour code used.

Tango is a developers toolkit. There are many libraries and tools for implemented device clients and servers. Refer to
the developers guide map for a quick overview.

Tango is designed to run small and large systems. In order to facilitate managing large systems a number of adminis-
trative tools are provided. Refer to the administrators map for a quick overview.

All control systems need to be able archive data so they can look back at past data. Tango comes with a number of
archiving solutions. Refer to the archiving map for a quick overview.

In addition to the rich Python, C++ and Java api’s for Tango a number of other languages can be used with the help of
one of the many bindings for Tango. Refer to the bindings map for a quick overview of the known bindings.

3.5 History

Intended audience: all

The concept of using device servers to access devices was first proposed at the ESRF in 1989. It has been successfully
used as the heart of the ESRF Control System of the institute accelerator complex. This control system was called
TACO. TACO was based on the SUN RPC (as is the NFS protocol) and C as its core programming language.

In 1999, a renewal of the ESRF distributed control system was started with the aim of replacing SUN/RPC with
CORBA, using C++ as the core programming languages. The new software was called TANGO and was developed as
a collaboration. In June 2002, Soleil and ESRF offically decide to collaborate to develop this renewal of the old TACO
control system. Soleil is a French synchrotron radiation facility based close to Paris. In December 2003, Elettra joined
the club. Elettra is an Italian synchrotron radiation facility located in Trieste. Beginning of 2005 ALBA also decided

3.4. Ecosystem 11

https://www.esrf.eu
https://www.synchrotron-soleil.fr/
https://www.elettra.trieste.it/

Tango Controls Documentation, Release 9.3.4

to join. ALBA is a Spanish synchrotron radiation facility located in Barcelona. DESY and MaxIV were the next big
synchrotrons in Europe to join the collaboration. After that things speeded up and more and more sites doing diverse
things adopted Tango.

12 Chapter 3. Overview

https://www.cells.es/en/
http://www.desy.de/
https://www.maxiv.lu.se/

CHAPTER 4

Installation

Intended audience: administrators, developers, users

Here you will find recipes on how to install the Tango Controls on various platforms.

4.1 Overview

Intended audience: administrators, developers

4.1.1 What is Tango Controls

Tango Controls is an object oriented, distributed control system. It is a framework for building custom SCADA
systems. Tango defines communication protocol and API. It provides libraries, set of GUI tools and drivers (so
called Device Servers) for variety of standard and specific control equipment. For more information see: http://www.
tango-controls.org/what-tango-controls/

TANG,

Your computer may have different (one or more) roles in the Tango CS system. The roles are:

» Tango Host, where configuration of all other components is stored

» Tango Applications, where you run CLI or GUI applications like Synoptic
 Tango device servers running

* Tango development, where you develop you Device Servers or Tango applications.

Your computer may perform all above roles simultaneously.

13

http://www.tango-controls.org/what-tango-controls/
http://www.tango-controls.org/what-tango-controls/

Tango Controls Documentation, Release 9.3.4

Tango Host, DataBaseds

Each Tango Controls system/deployment has to have at least one running DataBaseds device server. The machine on
which the device server is running has a role of so called Tango Host. DataBaseds is a device server providing con-
figuration information to all other components of the system as well as a runtime catalog of the components/devices.
It allows (among others) client applications to find devices in distributed environment.

The TANGO_HOST environment variable is providing information about the address or IP number and the port
on which the DataBaseds is listening for Tango connections. The TANGO_HOST environment variable is built as
follows:

host_name_or_IP:port, example: localhost:10000

Tango installation can be very simple running on a single machine for managing a few devices or it can be a fully
blown installation managing tens of thousands of devices and multiple Tango control systems.

Tango Host Role

The central role of a Tango control system is Tango Host role, it is created by running the DataBaseds device server.
This device server requires MariaDB or MySQL database in its most common application.

The recommended way of running device servers is to use the Starter service.

 a Database server (MariaDB or MySQL)

Warning: root password for database can be different from the computer root password. This password should
not be empty. tango database password for tango database can be empty.

¢ an official Oracle Java JRE (Java Runtime Environment) >= 1.7

* a Tango database. It will ask for a port number, this port will be the one used by the server for Tango requests.
The hostname has then to be known from all the computers which will access to Tango Host. It is mandatory to
install this tango database before every tango client.

Tango development Role

This role is to develop applications and device servers. To play this role, you need:
* the libtango headers for development
* pytango to allow accessing Tango through Python

¢ an official Oracle Java JRE (Java Runtime Environment) >= 1.7 for development with Java

Tango applications Role

This role is to run CLI and GUI applications. To play this role, you need:
* an official Oracle Java JRE (Java Runtime Environment) >= 1.7 for Java applications
« the libtango java tools (astor, atkpanel, jive, pogo, etc.)

* pytango to allow accessing Tango through Python (if using Python device servers)

14 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Tango device servers Role
This role is to run device servers (drivers): The recommended way of running device servers is to use Starter
service.
To play this role, you need:
* a Tango Starter service
* a TangoTest device server to allow testing

e an official Oracle Java JRE (Java Runtime Environment) >= 1.7 for Java device servers

Every roles

Whatever the role, every computer needs:
* the libtango offline documentation
* the liblog4j package for logging

* to set an environment variable TANGO_HOST to the Tango Host and the port, for example

TANGO_HOST=mycomputer:10000

mycomputer is the hostname on which is installed Tango Host, and 10000 is the port defined during the
installation of Tango database.

Warning: The choosen port should be defined according to network rules and it should especially be compatible
with authorized ports.

4.1.2 Single computer

Installing Tango on a single machine means all roles described above (Tango Host, Tango applications, Tango device
servers, Tango development) will be played by the same computer.

The software needed are described in each role.

In this installation type, a TANGO_HOST environment variable has to be set to TANGO_HOST=HOSTNAME : PORT
where HOSTNAME is the name of the computer and PORT is the port on which the server will wait for requests. This
will be used to send Tango request. This TANGO_HOST environment variable should be loaded at each startup.

4.1.3 Multiple computers

When installing several computers, one should install one Tango host and some clients computers.
Those clients can play different roles (Client computers, Device servers running, and Development).

Moreover, it is possible to start several Tango Host within the same Tango control system in order to keep the control
system working if one of them dies. This configuration is described in section Multiple database servers within a
Tango control system.

4.1. Overview 15

Tango Controls Documentation, Release 9.3.4

4.1.4 Multiple control systems
Several Tango control systems can be used. It means every Tango control systems will have its own Tango Host which
will store its own device servers configuration.

In this environment, Tango Host and Tango clients installation is the same as described upside, but TANGO_HOST en-
vironment variable has to be set on each client according to which server will be used for device servers configuration.
The hostnames of the Tango Hosts have then to be known from all the computers which will access to them.

For example, if test server and productionserver have been installed as Tango Hosts, each one will propose
Tango database as a service, and client can be configured as followed:

¢ testclient] with TANGO_HOST=testserver:10000

e testclient2 with TANGO_HOST=testserver:10000

* operatorclient with TANGO_HOST=productionserver:10000

¢ developerclient with TANGO_HOST=productionserver:10000
e dsclient with TANGO_HOST=productionserver:10000

In this configuration, one can decide to change TANGO_HOST value on a client to use another server. However, this
will need to restart every device running on this client.

4.1.5 No database

It is possible to run a device server on some computer without a Tango database.

Warning: A configuration without SQL database can be useful for testing purpose. However, it will not benefit
the major part of the Tango functionnalities.

See section Running a device server without SOL database to understand how to use this configuration and what are
the limitations.

4.2 Source Code

Intended audience: administrators, developers
Tango Controls for C++ and Java is available for download as source code or as pre-compiled binaries.
The latest source code release is 9.3.5.

Always look at the Patches page when you download a Tango release. If some patches are available for your release,
please, get and apply them.

Previous releases
* 9034
¢ 925a
* 9022
* 8.0.5

16 Chapter 4. Installation

https://gitlab.com/tango-controls/TangoSourceDistribution/-/releases/9.3.5
https://gitlab.com/tango-controls/TangoSourceDistribution/-/releases/9.3.4
https://sourceforge.net/projects/tango-cs/files/tango-9.2.5a.tar.gz/download
https://sourceforge.net/projects/tango-cs/files/tango-9.2.2.tar.gz/download
https://sourceforge.net/projects/tango-cs/files/Previous_Releases/Tango8/

Tango Controls Documentation, Release 9.3.4

4.3 Long Term Support Versions

Intended audience: administrators, developers

In 2016, the Tango-Controls Steering Committee requested the introduction of Long Term Support versions for some
key components of Tango-Controls like cppTango, the C++ Tango Library and JTango.

Long Term Support (LTS) versions are special versions of Tango components which will be supported for at least 5
years (starting from the day when the next direct major version is released). LTS versions will benefit from critical
bug fixes and potentially some patches for simple new features and less critical bugs.

For cppTango, the latest 9.3 version became an LTS version when cppTango 9.4.0 was released on September 30th
2022, three days ahead of schedule. This means that cppTango 9.3.x will be supported until October 2nd 2027.

For the LTS versions only cppTango 9.3.x and starter will stay at C++98, all other projects can require newer C++
standards.

For PyTango there is no LTS policy. PyTango releases target the most recent minor release of cppTango. This means
that PyTango currently (July 2022) supports cppTango 9.3.x. After cppTango 9.4.0 is released, future PyTango releases
will support cppTango 9.4.x. Critical bug fixes to PyTango for unsupported cppTango releases are not planned.

4.4 Linux

Intended audience: administrators, developers

4.4.1 Debian + Ubuntu
Non-interactive installation

1. Install packages required to compile tango-controls:

sudo apt-get install g++ openjdk-8-jdk mariadb-server libmariadb-dev zliblg-dev,_,
—~libomniorb4-dev libcos4-dev omniidl libzmg3-dev make

2. Start mariadb :

sudo service mariadb start

3. Set password for mariabdb root user to ‘mypassword’ (change as appropriate):

sudo mariadb -u root

ALTER USER 'root'@'localhost' IDENTIFIED BY 'mypassword';

UPDATE mysgl.user SET authentication_string = '' WHERE user = 'root';
UPDATE mysqgl.user SET plugin = '' WHERE user = 'root';

4. Download source tarball from github:

wget https://gitlab.com/api/vé4/projects/24125890/packages/generic/
—TangoSourceDistribution/9.3.5/tango-9.3.5.tar.gz

5. Unpack in a sub-directory called tango:

mkdir tango
cd tango
tar xzvf tango-9.3.5.tar.gz

4.3. Long Term Support Versions 17

https://www.tango-controls.org/about-us/executive-2016/

Tango Controls Documentation, Release 9.3.4

6. Configure tango-controls to build and install in /usr/local/tango (set the DB password as appropriate):

./configure -—-enable-java=yes --enable-mariadb=yes —--enable-dbserver=yes —--enable-
—dbcreate=yes —--with-mysgl-admin=root —--with-mysgl-admin-passwd='mypassword' —-—
—prefix=/usr/local/tango

7. Compile tango-controls:

’make

8. Install tango-controls:

sudo make install

9. Add following lines to start script /usr/local/tango/bin/tango:

sudo gedit /usr/local/tango/bin/tango
add lines near the top:

export MYSQL_USER=root
export MYSQL_PASSWORD=mypassword

10. Start tango-controls database server:

’sudo /usr/local/tango/bin/tango start

11. Set the TANGO_HOST variable (note: you can do this in e.g. ~/ .bashrc or wherever it is appropriate for
your system):

export TANGO_HOST=localhost:10000

12. Start test device server:

’/usr/local/tango/bin/Tanquest test &

13. Test Jive:

’/usr/local/tango/bin/jive &

You can now define your device servers and devices, start and test them!

4.4.2 CentOS

RPM packages for RedHat based systems are built from the tango-spec repository using Copr. Copr can be used as
a repository but only the latest build is kept forever. To install the packages directly from Copr, please refer to the
tango-spec README.

RPM packages from Copr are also available in the MAX-IV’s repository. Use yum to install them e.g. to install the
TANGO database and test device server:

$> sudo yum install -y mariadb mariadb-server
sudo yum install -y libtango9 tango-db tango-test

The above packages install the Tango core C++ libraries, database and TangoTest server.

18 Chapter 4. Installation

https://gitlab.com/tango-controls/tango-spec
https://copr.fedorainfracloud.org/
https://gitlab.com/tango-controls/tango-spec/-/blob/main/README.md#installing-the-rpms
http://pubrepo.maxiv.lu.se/rpm/el7/x86_64/

Tango Controls Documentation, Release 9.3.4

Installation

If you want to install TANGO on CentOS, here are the steps you should follow:
¢ add the EPEL repository:

$> sudo yum install -y epel-release

* add the MAX-IV’s public repository by creating the following file:

$> sudo nano /etc/yum.repos.d/maxiv.repo

[maxiv-public]

name=MAX IV public RPM Packages - $basearch
baseurl=http://pubrepo.maxiv.lu.se/rpm/el$releasever/$basearch
gpgcheck=0

enabled=1

$> sudo yum makecache

e install and start MariaDB:

$> sudo yum install -y mariadb-server mariadb
sudo systemctl start mariadb
sudo systemctl enable mariadb

* run mysql_secure_installation script:

’$> sudo mysqgl_secure_installation

* install TANGO library:

’$> sudo yum install -y libtango9 libtango9-devel

* install tango-db and tango-common packages:

’$> sudo yum install -y tango-db tango-common

¢ create TANGO database:

$> cd /usr/share/tango-db/
sudo ./create_db.sh

* set up TANGO environment:

Note: You should not use localhost as your TANGO_HOST. You can set the machine hostname using sudo
hostnamectl set-hostname tangobox

’$> sudo nano /etc/tangorc

For example:

’TANGO;HOST:tangobox:lOOOO

* set up environment variables:

4.4. Linux 19

Tango Controls Documentation, Release 9.3.4

$> sudo nano /etc/profile.d/tango.sh

For example:

/etc/tangorc
export TANGO_HOST

¢ start and enable TANGO database:

$> sudo systemctl start tango-db
sudo systemctl enable tango-db

* install Starter and TangoTest:

$> sudo yum install -y tango-starter tango-test

e start and enable Starter:

$> sudo systemctl start tango-starter
sudo systemctl enable tango-starter

e install Java based tools:

’$> sudo yum install -y tango-java

* install PyTango:

’$> sudo yum install -y python-pytango

4.4.3 Arch

An AUR package exists here

Download and install it from there, or use your favourite AUR helper application to do the work for you.

4.4.4 Video

The following video (by Mohamed Cherif Areour, in French with English subtitles) shows you how to install Tango
on Ubuntu and LinuxMint.

4.4.5 Testing

How to test that everything was correctly installed

You have to have “tango-test” been installed and check where is it located (you can use “locate TangoTest” command)
and start it with “fest” instance.

For example:

20 Chapter 4. Installation

https://aur.archlinux.org/packages/tango/

Tango Controls Documentation, Release 9.3.4

$> /usr/lib/tango/TangoTest test

Console should display “Ready to accept request”.

After you may go to Jive and choose the following window (see the image below):

goTest
¢ % test

¢ &a] TangoTest
o {8 sys/tg_test

Copy
o % TestServer Paste
o % Uca Rename

o % XEnvMonitor Delete

Monitor device
Test device

Define device alias
Go to device node
Restart device
Device wizard

Log Viewer

TangoTest (it is a server)-> test (it is an instance) -> TangoTest (it is a class) -> sys/tg-test/1 (it is a device)
Right click on the device and choose “Test device”.

You should get a new window with “Attributes” where you should see the values. That means you have done every-
thing correct.

4.5 Windows

Intended audience: developers, administrators

This guide provides step by step guide on installation of Tango Controls under Windows operating systems.

4.5.1 Tango package installation

The following video (by Mohamed Cherif Areour, in French with English sub-titles) will help you to install TANGO
on Windows.

Prerequisite

Some Tango Controls tools require Java Runtime Environment (JRE) >=1.7. Please install it
first. You may find JRE on https://www.java.com .

4.5. Windows 21

https://www.java.com

Tango Controls Documentation, Release 9.3.4

The simplest way to have Tango Controls running is to install it from Binary packages.

* Download the binary package with your favorite browser.
¢ Run the downloaded executable file (double-click on it when downloaded).
* Follow instructions provided by the installation wizard.

* Configure TANGO_HOST environment variable:

On Windows 8 and 10:

* From the Desktop, right-click the very bottom left corner of the screen to get the Power User Task
Menu.

* From the Power User Task Menu, click System.
On Windows XP and 7

From the Desktop, right-click the Computer icon and select Properties. If you don’t have a Computer
icon on your desktop, click Start button, right-click the Computer option in the Start menu, and select
Properties.

Click the Advanced System Settings link in the left column.

In the System Properties window, click on the Advanced tab, then click the Environment Variables button
near the bottom of that tab.

In the Environment Variables window click the New button.
In the field Name write TANGO_HOST.

In the field Value write proper value. If it is the only computer in the Tango System provide
localhost:10000.

If there is a Tango Host already running on some other computer in your deployment and you have provided
proper address and port in the TANGO_HOST you may start using client and management applications like Jive,
Jdraw/Synoptic. In other case you have to configure the system to perform a role of Tango Host.

4.5.2 Tango Host role

To make a computer become a Tango Host you need to:

¢ Install MySQL server. You may use community version available from https://dev.mysql.com/downloads/

mysql/5.7.html . It is suggested to use MySQL Installer with all tools included. You may read more
on MySQL installation topic here: http://dev.mysql.com/doc/refman/5.7/en/windows-installation.html

It is suggested to create dedicated tango user with DB Admin priviledges during installation. In the
installation wizard on a tab Accounts and Roles select button Add User and create a dedicated user. See

22

Chapter 4. Installation

https://dev.mysql.com/downloads/mysql/5.7.html
https://dev.mysql.com/downloads/mysql/5.7.html
http://dev.mysql.com/doc/refman/5.7/en/windows-installation.html

Tango Controls Documentation, Release 9.3.4

[=] MySOL User Details X

Flease specify the username, password, and database role.

._\
lT.-\\'»x ||'F Username |tE|I'|EID |
L] Host |I|:u:alh-:|st w |

Role | DB Admin A

Authentication (®) My5GL

Password |'"'""‘ |

Confirm Password | senes |

Password Strength: Weak

QK Cancel

¢ Set up environment variables providing credentials to access MySQL:

— Open Command Line.

— Invoke command: $TANGO_ROOT%\bin\dbconfig.exe.

Note: This lets you set up two environment variables MYSQL_USER and
MYSQL_PASSWORD used to access the MySQL server. You can check if variables were
set correctly, if not you can set it manually. It’s recommended to restart computer after
operation. You may use root credentials provided upon MySQL installation if it is your
development workstation. For production environment it is suggested to create an addi-
tional user with DB Admin privileges. On Windows you may use MySQL Installer
from Start menu and select the option Reconfigure for MySQL Server. Please refer to:
http://dev.mysql.com/doc/refman/5.7/en/adding-users.html

* Populate database with an initial Tango configuration:

— Open a command line.

— Add MySQL client to be available in the PATH. For MySQL version 5.7 the command should be:
set PATH=%PATHS%; "C:\Program Files\MySQL\MySQL Server 5.7\bin"

Note: Adjust the path according to your MySQL version and the path where it is installed.

— Invoke ecd "$TANGO_ROOT%\share\tango\db\".

— Call create_db.bat.

e Start a DataBaseds device server:

— Open a new command line window.

— In the command line call "$TANGO_ROOT%\bin\start-db.bat".

Note: To make your Tango installation operational you have to have this DataBaseds
running permanently. You may either add the command above to Autostart or run it as a

4.5. Windows

23

http://dev.mysql.com/doc/refman/5.7/en/adding-users.html

Tango Controls Documentation, Release 9.3.4

service.

¢ Make DataBaseds run as a service

Note: The proposed solution uses NSSM tool which works on all versions of Windows but you may find
some other tools available including native srvany.exe.

Download NSSM from http://nssm.cc/.

Unpack the file to some convinient location. It is suggested to copy proper (32bit or 64bit) version to
the Tango bin folder $TANGO_ROOT%\ \bin\\.

Open Command Line as Administrator.

Change current path to where the nssm is unpacked or copied, eg. cd "$TANGO_ROOT%\bin".

Invoke nssm.exe install Tango-DataBaseds. This will open a window where you can
define service parameters.

* In the Application tab provide information as follows (adjust if your installation path is different).

N MS5M service installer by

Applicatian lDetaiIs] Lag u:un] Dependencies] F'ru:u:ess] Shutdnwn] Exit 4| *

Application

Path: |E:"~F'r-:ugram Filezhtangobin\D atab azeds. exe
Startup directon: |E:'\F'r-:ugram Filezhtango'.hin
Argqurnents: |2 -ORBendPaint giop:tep: 10000

Service name: |Tangu:u-D ataBazeds

* In the Environment tab provide variables with credentials used for accessing the MySQL, like:

N MS5M service installer by

F'ru:u:ess] Shutdown | Exit an:tiu:uns] 140]File rotation Envirnnment] 1) r

E nvironment warahles

MY'SOL_USER=tango
MvSAL_P4SSWORD=tango

[Replace default ervironment [zrvany compatible)]

Service name: |TangD-DataEaseds Inztall zervice | I:aru:el|

% Click Install Service.

24 Chapter 4. Installation

http://nssm.cc/

Tango Controls Documentation, Release 9.3.4

— Invoke nssm.exe start Tango-DataBaseds to start the service.

— Test if everything is ok. Use Start menu to run Jive or in command line call
"$TANGO_ROOT%\bin\start-jive.bat".

4.5.3 Running Device Servers
The recommended way of running device servers is to use Starter service. Then you may use NSSM as for
DataBaseds. Assuming you have downloaded it and copied to the Tango bin folder please follow:

* Open Command Line as Administrator (if it is not yet open).

* Prepare folder for Device Servers executable:

Note: To let your device servers start with Starter service their executables have to be in a path
without spaces. This is a limitation of the current Starter implementation.

— Create a directory for Device Servers. Let it be C:\DeviceServers\bin with mkdir
c:\DeviceServers\bin

— Change to the Tango bin directory with command (ecd "$TANGO_ROOT%\bin")

— Copy TangoTest device server to the newly crated folder: copy TangoTest.exe
c:\DeviceServers\bin

¢ Add entry about the Starter device server you will start on your computer:
— Start a tool called Astor. You may use either Windows Start menu or call tango—-astor.bat
— In Astor window select menu Command — Add a New Host

— In the form that appears provide your Host name and Device Servers PATH.

4.5. Windows 25

Tango Controls Documentation, Release 9.3.4

F >

Create a S5tarter in Database For a New Host

Host name : pg-dell-new

Host Usage:;

Host Family: |

) Manage notifd

Device Servers PATH :

CADeviceServersibin

Create Cancel

— Accept with Create
— Go back to Command Line

* Install Starter service:
— Invoke nssm.exe install Tango-Starter.

— In the Application tab provide information as follows:

™ MNS5M service installer et

Application l Details] Log u:un] Dependencies] F'r-:u:ess] Shutdnwn] Exit 4] *

Apphcation

Path: |I::"~F'ru:ugram FilezhtangobinsStarter. exe
Startup directony: |E:'\.F'ru:ugram Filezhtango'bin
Argurnents: |pg-dell-new

Service name: |Tangu:u-5tarter

Eancel|

Adjust if your installation path is different. In Arguments exchange pg—dell-new with the proper name
of your host.

— In the Environment tab provide TANGO_HOST variable, like:

26 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

W™ MNS5M service installer

Pt

F'ru:u:ess] Shutdown | Exit au:ti-:uns] 10]File ratation Envirunment] L

Environment variables

TANGO_HOST =localhost: 10000

[Replace default environment [zrvany compatible)

Service name: T ango-Starker

Cancel |

Click Install service
Start the service: nssm.exe start Tango-Starter.
Go back to Astor.

After a while you will see a green led next to your host name:

;». TAMGO Manager - 6.7.0 - Wed Jan 27 07:... — O

File View Command Tools Help

TANG/'s_Control System
{‘\.\.

l\.ﬂ|:|'-~.€5_i Tango Database

@ localhost 10000

¢+ @ Miscellaneous
@

¥

* Run TangoTest device server:

You may test the configuration by starting prefigured TangoTest device.

— Start Astor if it is not running.

4.5. Windows

27

Tango Controls Documentation, Release 9.3.4

#. TANGO Manager - 6.7.0 - Wed Jan 27 07:...

File View Command Tools Help

- |

@ localhost 10000
¢+ @ Miscellaneous

@ pg-dell-new|

TANG/'s_Control System
¥ MI;I’TI’\ Tango Database

— Double Click on your computer name to open Control Panel. It opens a window as below:

,»1», pg-dell-new Centrol

Start New

Start All

Stop All

x

@ Display All

0 Controlled Servers on pg-dell-new

— Click Start new.

— In the open window select TangoTest/test:

@ Not Controlled

Dismiss

28

Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Fiky

Server list

Create New Server

*

Filter :

DataBasedsi2
Starter/pg-dell-new
TangoAccessControlM
angoTesttest

Get Server List from Another host

Start Server Cancel

— Click Start Server.
— In the open window select Controlled by Astro -> Yes, and Startup Level -> Level 1

Pt

TangoTest/test running on pg-dell-new

Controlled by Astor : i#® Yes i No

Startup Level : Level 1

oK Cancel

— When you click OK it should start the server. After a while you should see:

. Windows

Tango Controls Documentation, Release 9.3.4

;x pg-dell-new Control e

Start New Start All Stop All i Display All

1 Controlled Servers on pg-dell-new

@ Level 1
@ TangoTestfhest

Dismiss

e Running your Device Servers:

— You need to copy an executable to the folder configured for Starter. In our example it is
C:\DeviceServers\bin.

— Then use Astor. After opening Control panel for your computer (double clicking on a label) and
selection Start New. ..

— Select Create New Server and follow a wizard.

4.5.4 What’s next

You should check PyTango and Taurus library and tools to cope with scripting and GUIs for Tango Py-
Tango and Taurus on Windows.

4.5.5 Typical issues

* Error when running a command with TANGO_ROOT variable:

— Check if environment variable is set correctly.

— C:Program is not recognized as an internal or external command, operable program or batch file.
% Check if you don’t forget about the quotation mark in command.

* Alternatively, install Tango outside of the C: \Program Files.

4.6 Raspberry Pi

Intended audience: developers

30 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Installing Tango on a Raspberry is very simple - just one line command.

4.6.1 Installation with database

If you need the local database, process this installation before other installation

1 | $ sudo apt install mysgl-server mysgl-client
> | $ sudo apt install tango-db tango—common

More details on readthedocs

Warning: The ERAS project ReadTheDocs entry does not exist. Please refer to the PDF on the other side of the
provided link.

4.6.2 Installation without database

On Raspberry 2 and 3, it is better to wait for the network on booting.
(Raspberry PI Preference menu, wait on boot, check “wait for network™)

TANGO installation (one line command) :

1 |$> sudo apt install tango-starter tango-test liblog4jl.2-java

Graphic tools (Jive, Astor,...) installation :
download the latest version of libtango-java librairies on picca

and installing

$> sudo apt install —--assume-yes wget\
wget —-c https://people.debian.org/~picca/libtango-java_XX_ version.deb\
sudo dpkg -i ./libtango-java_XX_version.deb

4.7 Amazon Cloud

Intended audience: beginner users, beginner developers, beginner administrators

4.7. Amazon Cloud 31

https://media.readthedocs.org/pdf/eras/latest/eras.pdf
https://people.debian.org/~picca

Tango Controls Documentation, Release 9.3.4

4.7.1 TangoBox 9.3 AMI

The 9.3 release is also available as an AMI image on the AWS. The related AMI-ID is:

ami-0a2e0cddaa68be39f

The image contains all the features of the original TangoBox. It requires at least 2 vCPUs and 4GB of memory, which
corresponds to 12.medium instance type. The running costs apply according to AWS pricing.

An instance may be accessed with both SSH access or Remote Desktop.

SSH access

For security reason, the SSH does not accept password authentication. To SSH login to your instance, you need a
key-pair configured. The AWS web console asks for the key-pair during the launch process. You may either select
exiting or create a new key-par:

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they
allow you to connect to your instance securely. For Windows AMIs, the private key file is required to
obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair v

Choose an existing key pair

Create a new key pair

Proceed without a key pair
without this file, won't be able to log into my instance.

Cancel Launch Instances

Then, you can use the web console Connect feature. Please provide the username fango-cs:

32 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Connect To Your Instance X

| would like to connect with O A standalone SSH client (1)
@ EC2 Instance Connect (browser-based SSH connection) | D
OA Java SSH Client directly from my browser (Java required) (1)

Connect using a custom user name, or default to the user name for the AMI used to launch the instance.
Learn more

User name tango-cs (i)

Remote Desktop

There is also xXRDP server installed to enable a desktop connection. So, you can connect to the instance with, for
example a windows Remote Desktop client. For this feature, the instance Security Group settings shall allow for
connecting to 3389 port.

Warning: Before enabling the 3389 port, it is recommended to change the default tango-cs user password:
e connect to the instance with the AWS web console Connect, as described above.

e call passwd and change the password from the default. When prompted for the current password use tango.

After enabling the RDP port and connecting with a remote desktop client, you are greeted with the following screen:

swelcome to TangoBex

TANGA,

Connecting things together

fog |

_ ok | cancal |

After providing the username tango-cs and the valid password, you connect to the desktop:

4.7. Amazon Cloud 33

Tango Controls Documentation, Release 9.3.4

& 54.171.165.20:3389 - Podtaczanie pulpitu zdalnego - [m] X

® Applications Places)) 1241

user = tango-cs

‘i M& @‘1 pwd = tango
IDraw ioni Logfizwer
JLinac 4.11 (tangobox:10000) ©
File View Commands
TaUrusApDS
Mod1 Power Out[0.25 MW Mod1 VPFN| 33kv T device [PCT -] tite NG FILE TOADED
ile

Mod2 Power Out |0.25 MW Mod2 VPFN | 33 kV SRCT limit égé 0‘0A
YYY ¥YY

Homz buncher 0
IlIII (oo TFTTTA 300
IZI ﬁsemou 1 |:| 1 section 2} 22300
] eam sto
¢:$ 200

7 min 0 sec_remaining
temporization me—

|Low Heating

L&
JupyTang

‘ ! < 5 - VM assembled by
|
T N 't/ \. bOX E ' NNUVITT

&Tang

Connecting things together

= JLinac 4.1 (tangob

4.7.2 Previous version

The version of TANGO 9.2.5a is also available on the cloud.

An Amazon image running Ubuntu 16.04 with TANGO 9.2.5a is pre-installed and configured to start up at boot time.

The image is public and can be found under this id and region:

AMI-ID: ami-d503cfba
region=EU-Frankfurt

You can find out how to do this here.

Launch VM with this image and you will have TANGO 9.2.5 + PyTango 9.2.0 up and running including the TANGO

REST API so you can access it from internet.

Note: the TANGO_HOST is the private IP address of the VM.

This means the TANGO database and device servers are not accessible from the internet but only on the VM or set of
VMs which share the same VPN. This can be seen as a security feature. Use the REST api and TANGO security to

open up access to the device servers you want to expose.
To experiment with the REST api, start an instance of the AMI image on Amazon cloud.
You can connect to the TangoWebApp as follows:

1. point your browser to this url:

http://ec2-35-157-86-137.eu-central-1.compute.amazonaws.com:8080/TangoWebapp/

2. click on cancel on the popup login window

3. set the TANGO_REST_URL to

34 Chapter 4.

Installation

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html#finding-an-ami-console
http://tango-rest-api.readthedocs.io/en/latest/
http://tango-rest-api.readthedocs.io/en/latest/

Tango Controls Documentation, Release 9.3.4

http://ec2-35-157-86-137.eu-central-1.compute.amazonaws.com:8080/tango/rest

Note: NO spaces before or after and no quotes

5. set the TANGO_HOST to

ip-172-31-29-94.eu-central-1.compute.internal:10000

Note: NO spaces or quotes otherwise it won’t work!

6. click on the refresh button to the right of the TANGO_HOST field

7. login as user=tango-cs and pw=tango when prompted

Note: If you do not get a new prompt for user name and pwd from the host ec2-35-156-147-163.eu-
central-1.compute.amazonaws.com then the WebApp is down and it won’t work.

8. expand the tree of devices at the top left of the application

See picture below to find out more. You should be able to play with the TangoTest device sys/tg_test/]

Tango Webapp - Mozilla Firefox

U ec2-35-156-221-190.eu-central-1.compute.amazonaws.com 8080/ TangoWebapp, ¢ | |Q search wa o P P)
@ Getting Started @ DaERA ANGO @ pan-dataeu & g P o ggo Controls - Webu # Meditation Timer MListe des postes BIT eBooks ~ TOPCAT QESRF mail O Absences

Z ' Add server wizard appver:0.1/restver:rcd |2 || @

Devices Start page Device [sysig_test1] x ATKPanel [sysig_test1] »®
& [hiip:/iec2-35-156-221-190.eucen | [sysig_test1] - RUNNING Update rate (msj. | 1000 v %
© Ll dserver
&G sys —Status:
b accees_control The device is in RUNNING state
© [} databasa
0 L rest
L 1g_test
o [@1
;—: ::Hpemss Scalar boolean_speclrumboolean_speclrum_rodouble_sp :_spectrum_rofloal_sp at_spectrum_rolongB4_spectrum_ralong_specirumlong_spectrum_roshort_spectrum shor_speclrum_rostring_spectrum ==
ing

] Event

[Atiribute config
[] Pipe canfig

[Logging

bz
s

7

[
[}

B tioat_spectrum_ro

To see the running DEMO, please, follow the link. Use tango-cs/tango to login

4.8 Virtual Machine

Intended audience: developers, administrators, users

4.8. Virtual Machine 35

http://ec2-35-156-104-8.eu-central-1.compute.amazonaws.com:8080/TangoWebapp/

Tango Controls Documentation, Release 9.3.4

The purpose of the TANGO Box Virtual Machine is to give you a fast, out-of-the-box experience of a working
TANGO system. There is a set of shortcuts to all essential TANGO tools on the virtual machine desktop. Together
with the introductory video and user manual, that allow you to experience the power and elegance of a fully configured
TANGO system with all the latest tools first hand. After this “guided tour” of the TANGO system, TANGO Box is
an excellent tool to make further explorations on your own, to use it for demonstration purposes, to make studies,
proof-of-concepts and even production ready systems.

This way, out of this virtual box, another great, sophisticated control system for the real world can be born!

4.8.1 TangoBox 9.3

The latest release of TangoBox is based on Tango Controls v9.3.3 installed on 64 bit Ubuntu 18.04.
* You may download it from here.
e Please read Tango Controls demo VM'’s documentation.

¢ See also a release note and README.

Minimum Requirements

* 2vCPU
* 2GB (preferred 4GB) RAM
* 30GB of disk space

TangoBox 9.3 on the Amazon cloud

The TangoBox 9.3 release is also available as an AMI image on the AWS (Ireland region). The related AMI-ID is:

ami-0a2e0cddaa68be39f

Please refer to Amazon Cloud.

4.8.2 Previous versions

Previous versions are available below.

TangoBox 9.2
* Download 64 bit Ubuntu virtual machine with TANGO 9.2 RC11.
* Please read TangoBox 9.2 documentation.

Elder versions

e Download 64 bit Ubuntu virtual machine with TANGO 9.1.0.

Note:

— Use this link to download and read the documentation to install and run the virtual machine on your
desktop.

36 Chapter 4. Installation

https://s2innovation.sharepoint.com/:f:/s/Developers/EovD2IBwhppAp-ZLXtawQ6gB9F6aXPPs2msr2hgPGTO-FQ?e=Ii3tnr
https://github.com/tango-controls/tangobox/releases/tag/v9.3.3
https://github.com/tango-controls/tangobox/blob/develop/README.md
http://ftp.esrf.fr/pub/cs/tango/TangoBox-9.2_RC11.ova
https://sourceforge.net/projects/tango-cs/files/vm/
https://sourceforge.net/projects/tango-cs/files/Tango9_VM.pdf/download

Tango Controls Documentation, Release 9.3.4

— Use 7z to unzip it on Linux or unzip on Windows.

* download the 32 bit version running TANGO 7 on Ubuntu 11
* apreconfigured TANGO 8.1.2 64b ubuntu vdi (1.4 GB, for 64 virtual machine)

Note: Read the manual to know more.

We recommend the following videos about TANGO which will help you learn more about TANGO Controls.

TangoBox 9.3

Intended audience: beginner users, beginner developers, beginner administrators

TangoBox is a VM image running Tango Controls system and its various tools. It is intended to be used for demon-
stration and training. It also simulates distributed deployment by using Docker.

Download

The latest version of the TangoBox 9.3 can be downloaded from here.

What is installed

Below there is list of provide packages/features. Please note that some of them are installed as docker container and
maybe switched off (stopped) and requires to be switched on for being explored, see Switching containers on and off

* Tango 9.3.3

» Tango Access Control

e PyTango 9.3.3

* Taurus 4.5.1

* QTango

* Cumbia

e ITango

* Sardana 2.7.0

* PANIC/PyAlarm

* Bensikin

* Mambo

* Docker

* Linac system simulation (as docker container tangobox-sim)
e HDB/TDB, SNAP DS (as docker container tangobox-archiving)
* HDB++ (as docker container tangobox-hdbpp)

* JupyTango (as docker container tangobox-jupytango)

* SerialLine, Modbus and PyPLC device server (as docker container tangobox-com)

4.8. Virtual Machine 37

https://sourceforge.net/projects/tango-cs/files/tango_vbox_3_0rc5.7z/download
http://dl.free.fr/dWfRMq6Xe
https://sourceforge.net/projects/tango-cs/files/Tango%20Box%20Virtual%20Machine%20User%20Manual.pdf/download
https://s2innovation.sharepoint.com/:f:/s/Developers/EovD2IBwhppAp-ZLXtawQ6gB9F6aXPPs2msr2hgPGTO-FQ?e=Ii3tnr

Tango Controls Documentation, Release 9.3.4

» mTango + restAPI, Tango WebApp (as docker container tangobox-web)
e E-giga (as docker container tangobox-egiga)

e PyCharm

ModbusPal to simulate Modbus

First steps

First of all you have to download latest release of VirtualBox. It can be downloaded from www.virtualbox.org .
Simply install it and start the program.

» TangoBox is released as an .ova package so it can be easily imported.
* Select import and choose downloaded TangoBox file

* If you want, you can change VM’s configuration (i.e graphics, RAM). It is highly recommended to increase
default RAM size

38 Chapter 4. Installation

https://www.virtualbox.org/

Tango Controls Documentation, Release 9.3.4

? ot
€ |Import Virtual Appliance

Appliance settings

These are the virtual machines contained in the appliance and the suggested
settings of the imported VirtualBox machines. You can change many of the
properties shown by double-clicking on the items and disable others using the

check boxes below.

Description Configuration ~
Virtual System 1
'%,".E’ Name TangoBox
=] Guest OS Type “7 Ubuntu (64-bit)
Lk CPU 2
%) DVD
(¥ USB Controller
@+ Sound Card ICH AC97
®l Network Adapter Intel PRO/1000 MT Desktop...
{) Storage Controller (IDE) PllX4
{) Storage Controller (IDE) PlIX4 N
[] Reinitialize the MAC address of all network cards
Appliance is not signed
Restore Defaults Import Cancel
Fig. 1: A virtual machine settings window.
You may change number of CPUs and increase RAM size. Memory size has major impact on VM performance.
39

4.8. Virtual Machine

Tango Controls Documentation, Release 9.3.4

* Wait for VirtualBox to import machine
After importing the VM image to VirtualBox you may start it.
» Username is: tango-cs
e Password is: tango
tango-cs user has sudo privileges, so he may invoke commands as superuser with command sudo.

You may explore the Tango Controls feature by clicking related shortcuts on the Desktop.

Note: Plese note that some shortcuts are related to features running on containers. Please start related container first.
See the following section.

Switching containers on and off

Some of the features of Tango are provided inside pre-build docker containers. These can be switched on and off by
starting or stopping related containers. Containers behave similar to virtual machines with they own network cards
and operating system stack, however, lacking full separations.

To start a container, open terminal and invoke docker start {container-name}. For example, to star a linac
simulation use the following statement:

’docker start tangobox—-sim

To stop a container, open terminal and invoke docker stop {container-name}. For example, to stop a linac
simulation use the following statement:

’docker stop tangobox-sim

To see which containers are running please, call docker ps

Deployment structure
Network

Containers are created withing their own subnet: 172.18.0.0/16. The network is called tango_nw The subnet was
created with the following docker command:

docker network create —--driver=bridge --subnet=172.18.0.0/16 —--opt com.docker.network.
—bridge.enable_icc=true \
——-opt com.docker.network.bridge.host_binding _ipv4="0.0.0.0" —--opt com.docker.network.

—bridge.mtu=1500 \
——opt com.docker.network.bridge.enable_ip_masquerade=true tango_nw

Containers are assigned static IPs. List of the IPs assignment maybe seen in /etc/hosts. Use command cat
/etc/hosts to see its contents.

Containers and images dependency

Each container is based on its image. All images are already build but, if neccessary, Dockerfiles are stored in home /
Dockerfiles directory. Below is the list of all containers and corresponding images:

40 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Container Image Remarks

tangobox-com registry/tangobox-com -

tangobox-sim registry/tangobox-sim -

tangobox-archiving | registry/tangobox-archive -

tangobox-hdbpp registry/tangobox-hdbpp -

tangobox-web registry/tangobox-web -

tangobox-egiga registry/tangobox-egiga -

tangobox-jupytango | registry/tangobox-jupytango | -

- registry/tangobox-base Base container

- ubuntu Ubuntu image to build others

Currently images are stored in registry.gitlab.com/s2innovation/tangobox-docker registry.

Some device servers may be stopped when launching containers. It is so to get better performance (high cpu and ram
usage). To control and start/stop particular DS according to your needs, use Tango Manager (Astor) to it.

Example applications
Modbus simulation

To simulate Modbus, we suggest to use ModbusPal. To do so, use ModbusPal (simulation) desktop shortcut. Once
it is started, declare new modbus slave by clicking ADD. Choose 1 and name it 10.0.2.15. Now click “eye” button in
modbus slaves section and add at least 10 holding registers. You can change their values according to your needs.

After that, use RUN button to start simulation. Values in registers can be changed by clicking “eye” button in Modbus
slaves section.

Keep in mind that in ModbusPal, registers are counted from 1 while on DS from 0!

To monitor changes, use ATKPanel started from Jive. Both ModbusComposer and PyPLC have two attributes config-
ured:

* ModbusComposer: Temperature uses 4th; Pressure uses Sth register in ModbusPal

* PyPLC: Voltage uses 6th; Flow uses 7th register in ModbusPal

4.8. Virtual Machine 41

Tango Controls Documentation, Release 9.3.4

Link settings Project
TCPAIP | Serial [Replay Load Clear
Run

File View Preferences Help

| import [Export |[Modbus [~| []stay on tap
Holding registers | Coils | Functions | Tuning | I com/modbusicomposer |:|z|

Learn Tools ‘ Add || Remove H Bind H Unbind ‘ com/modbus/composer
Record Master Scripts Address valua Namea Binding AR HE =

Save Save as

TCP Port:

Ascii Help Console

Modbus slaves

| add || Eenableall || bisableall |

1 100,215

£3

Automation 170 Temperature |654.30 El

[add [startan || stopanl 180

oG Pressure [52.10 ||

Adding registers completed. || Scalar

Fig. 2: View on a ModbusComposer device and configured ModbusPal simulator.

JupyTango

JupyTango is a Jupyter featuring Tango related kernels. With JupyterLab you may interact and do scripting for Tango
through a web browser.

B = o) 03

JupyterLab - Mozilla Firefox

Z JupyterLab
c @ ® tangobox-jupytango: w I @ =
Z Fle Edt View Run Kemel Tabs Setings Help
™ + * c ™ Console 1 X ™ Console 2 x
* ssquickref -> Quick re squickref -> Quick re
| Name - Last Modiied help “> Python's own help systen. help -> Python's oun help systen.
Rl monnago | OPIECtT > Details about ‘object’, use ‘object??’ for extra details. object? > Details about ‘object’, use ‘object??’ for extra details.
el O™ ayearago | Ipython profile: jupytango IPython profile: jupytango
£ dev 2 hours ago
B et 14 days ago
ol o pta sys/tg_test/1/wave pta sys/tg_test/1/double_inage ro
home ayearago
=1 amontn ago
o et 2 monts ago sys/tg_test/1/wave @ 2019-05-21 08:37:45 sys/tg_test/1/double_image_ro @ 2019-05-21 08:38:33
— 250
£ media 2 months ago N
& moe 2 months ago
£ opt 2 months ago
£ proc 2 hours ago
£ root 2 minutes ago 200
& 2 months ago 0]
& sbin 2 months ago
o s 2 months ago
BOsys 2 hours ago 150
& mp amontn ago
£ usr 2 months ago o]
£ var 2 months ago
0 JupyTango-0.0. 2 month ago
O pytango-9.3.0- 2 month ago 1oo
[tango-source-d 2 month ago
05
s0
N

0 50 100 150 200 250

3 JupyterLal

Fig. 3: Browser window with JupyTango in action

42 Chapter 4. Installation

http://jupyter.org/

Tango Controls Documentation, Release 9.3.4

In case you want to try it, here’s the procedure:
1. start jupyterlab (it is started by default): docker start tangobox-jupytango
2. open a new browser window and go to http://tangobox-jupytango:8888/lab
3. enjoy!

Here are the JupyTango additions to itango:

Plotting a tango attribute

Syntax:

pta [options] <tab for device selection> + <tab for attribute selection>

Supported options:
e -w or —width: plot width in pixels
* -h or —height: plot height in pixels

Monitoring a tango attribute: Syntax:

tm [options] + <tab for device selection> + <tab for attribute selection>

Supported options:
e -w or —width: plot width in pixels
e -h or —height: plot height in pixels
* -p or —period: plot refresh period in [0.1, 5] seconds - defaults to 1s
* -d or —depth: scalar attribute history depth in [1, 3600] seconds - defaults to 900s

You can try to kill the monitored device will the JupyTango monitor is running to see how errors are handled.

JLinac simulation

To start simulation, you need to run tangobox-sim container (use docker start tangobox-—simto startitfrom
a terminal). It is also important to make sure that all related device servers are running. The easiest way to do it is to
check it in Astor - a bulb next to tangobox-sim should be green.

4.8. Virtual Machine 43

http://tangobox-jupytango:8888/lab

Tango Controls Documentation, Release 9.3.4

B = o) 0a

JLinac 4.1 (tangobox:10000)

File View Commands

Mod1 Power Out[0.25 MW Mod1 VPEN| 33 kv CT device 5
AAA AA File [NO FILE LOADED
Mod2 Power Out[0.25 MW Mod2 VPFN[33KV sRCTlimit 280.00
buncher
cosling 777777
300 ——
. N 223.00
= Isectlon II I Section 21
I MO < Beam Sto
= 200
gu 100}
off on
elin/gun/aux
[evice s OK
oL
Heating current [6.00 Amperes RF
a2 MEI mod1l modulator 1 modulator 2 mod2
i lii d2/h
Heating Voltage | 5.60volts 5. 6707E| ;e':f:‘: ozi = -
Temporization [0 seconds [] [om |
5
AL AL
igh Vol . I .
High Voltage (1885 Volts 18, %%E
[standby : SR current reached ! | [petails ... | L Dadead)| TURINolS ™

&Y JLinac 4.11 (tangob... Y elin v B3 elin/gun/aux

Fig. 4: JLinac simulation running.

HDB/TDB/SNAP Archiving (Mambo, Bensikin)

Prior to use HDB/TDB (Mambo) or SNAP (Bensikin) you need to make sure that the tangobox-archiving container
and related device servers are running:

e Call docker start tangobox—archive on aterminal.
* Start Astor and check if the tangobox-archive node is green.

Then, you may start Mambo or Bensikin by clicking icons on the desktop.

44 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

iy B =) 1045

File Contexts Snapshots Favorites Tools Help

File ACs VCs Tools Help

Mambo v2.6.1 - tango-cs

) LEECR
< p: “A{View configurati
I L P ([0 ew] [: 20100507 09:57:47.571 X
0 T, < o2 s M D
of- [] 20150507 ose57ia7.571 |
e E— E—
7 ||| Wame: created: 1970-01-01 01:00:00.0 Last modified: 2019-05-07 09:57:47.571
R l CEre =
D | Time | Cor @ Fully expand this tree / Number and Boolean Scalars
av =773 HDB and Boolean
context R & Information loaded [Substract mean
0: 1 Attribute count: 2 = g et Begin: 2019-05-07 05:57:31.145, End: 2019-05-07 09:57:31.145
1 100
Time: 2019-05-07 .
el 4 double_scalar
(#) Name: [TangoTest snapshot "¢ long_scalar
(%) Author: [52innovation s
(4) Reason: [Demo
() Descripti sysitg_test/1 50
& 10000 av =
Cyalin & Eysys 25
archiving 5 Cyte_test G Tangotest
(com EE
Scontroler L 4 [eThLte EdieTRLEG| g o
Door - Bjlong_s equipmen quipment with comman
gmw along B s et caupments| [set equiment with d B v
elin Linked context ID: 1 Snapsho Time: 2019-05-07 06:57:05.0 Attribute count: 25
(=]
(Cgexpehan + Attributes | Write Value | ReadValue | DELTA
S:’EE‘S;E' sys/tg_test/1/double scalar 10.00 07 2.93 =
acroserver sysftg_test/1/long_scalar 100 58 42
Cymntgre — =
Cymotor) s
Cpm Time range
S —
Clsvs SencE 07:20:00 07:30:00 07:40:00 07:50:00
Citango av
[Cotest L {I||| End date: 2019-05-07 09:57:311as ||| oo scalarfread (Y1)
(triggergate =| 5 -~ - - sys/tg_test/1/double_scalar/write (Y1)
yrErTE BT W et ions, St ()
i sysitg_test/1flong_scalar/write (Y1)
| 4 Refresh | | variations | | & modity |
e | T ~DEBUG: Using resource ©
- DEBUG: account is tango-cs with path /home/tango-cs/tools/archiving fava/profiles
O 1st Snapshot 2nd Snapshot BE compare - DEBUG: Loaded application options successfully.
75 Register this Contex Launch snaps B2 PP P .
- DEBUG: Loaded application history successfuly.
- INFO : extract from DB for sys/tg_test/Lflong_scalar took 158 ms

HDB++ Archiving

- INFO : extract from DB for sys/tg_test/1/double_scalar took 81 ms

Fig. 5: Screen of running Mambo
Please take note of a green bulb of the rangobox-archive node in the Astor window.

To use HDB++ and its tools (HDB Configurator and HDB Viewer) please make sure that the tangobox-hdbpp
container and related device servers are running:

e Call docker start tangobox-hdbpp on a terminal.

* Start Astor and check if the tangobox-hdbpp node is green.

Then, you may start HDB Configurator or HDB Viewer by clicking icons on the desktop.

4.8. Virtual Machine

45

Tango Controls Documentation, Release 9.3.4

MySQL HDB++ Viewer [1.14]

File View Tools help File ew
0 Started Attributes | 0 Paused Attributes | 4 Stopped Attributes |][(Chart} Table] Tmage] EIE3
B i 110000
&2/ HDB++ Configurator Flter tangos [T] B
* sys 250 || Zoom back
Attribute trategy | TTL ¢ Ctg_test
al + 10000, current WAYS | -~ v @1
I J JJ 10000/sys/tg_test/1/ampli WAYS | -—-- 2, double_scalar
1 10000/sys/tg. double_scalar WAYS | -—-- 2y long_scalar
TANG/ 3 tangobox:10000 10000/sys/tg_test/1/long_scalar WAYs | --- i
(N 200

o alin
o @ archiving
> & com
- controller
> @ Door
- dserver =0
o @ elin
o & expchan
o @ ioregister
o & MacroServer |
& & mntorp w00 sys/tg_test/L/long scalar (Y1)
e motor |Time = 08/05/19 09:18:08.473
e pm =109
o & pool
o @sr
o @ sys
o @ tango =0
o @ test
> @ triggergate

Start |21/04/2019 09:56:08 EE‘I

Stop [21/85/2019 09:56:08 Elm

Last month ~

== == sys/tg_test/1/double_scalar (Y1) sys/tg_test/1/long_scalar (Y1)
Perform search_|] Show legend [show grid (] Cickabe erroronly (JView Errors xAxis[rme —[+]

EIES)
Tango Host Attribute ds Table | Step | Sel.¥1| Sel.v2 | Sel.img
sysitq_test/1/double_scalar v
sys/tq_test/1/double_scalar_w
sysitq_test/1/long_scalar v
sysitq_test/1/long_scalar_w scalar_long_...]79 (Err=

Device Filter: [+

Python script

Selection
L+] [oad | save || Remove || ciear a [alva [[an vz |

Fig. 6: HDB Configurator and HDB Viewer

E-giga is a web application for archiving data visualization (HDB/TDB and HDB++). The TangoBox deployment
uses HDB/TDB.

46 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

eGigazm - Mozilla Firefox

<r eGiga2m x e

() tangobox-egiga ¢ | |Q search T Ba ¥+ @ 5

start [2017-11-1400:0000 [5 €% GigaEm 2071112 000
stop |2017-11-1500:00:00 5
¥ 0 sys 250
¥ [tg_test
YE1

200
;I double_scalar

% float_scalar
;I;Io scalar 150
% State

% string_scalar
100

50

sys/tg test/{/double scalar
sysitg_test/1/long_scalar

16:37:45 16:37:50 16:37:85 16:36:00 16:38:05 16:38:10 16:38:15 16:38:20

export to png

Fig. 7: E-giga in a web browser window

To use e-giga following conditions must be fulfilled:
* tangobox-archive and tangobox-web containers must be started and archiving device servers must be running

* use i.e. Mambo to enable data archiving for HDB database. It is required. If you do not see any attributes in
E-giga it is probably due to archiving being disabled. Check with Astor if the tangobox-archive LED is green
and with Mambo if there are any attributes configured to be archivied.

To open browser with E—giga click on the relate desktop icon.

Tango WebApp

Tango may be available through a web browser. Tango WebApp is a general purpose Tango web application. You may
try it on the TangoBox.

4.8. Virtual Machine 47

Tango Controls Documentation, Release 9.3.4

@ Applications Places it B =) 1047 3

Tango Webapp - Mozilla Firefox

A Tango Webapp

& c @ ® tangobox-web: T e tango_wel ex.ht w o =
A ~ a ®
TANGL. = tango-cs
= < v ° >
@ Dashboard (& Scripting 4 Settings £ [localhost:10000]
&%a Tango host: localhost:10000 v 2019-05-21T10:47:01: & tango-cs ;
B Device: sys/tg_test/1 v 84 [sysitg_test/1/wave] x | | Action: read attribute: localhost:10000/sys
B3 Attr: wave ~ @ = | /9-tesyiiwave ; Result: SPECTRUM = .
Data acquired @ Tue May 21 2019 10:47:01 GMT+0200 (Central European Summer Time) - _ —
Name wave 2019-05-21T10:46:15: Welcome,
—cstl!
Label wave tango-cs!
Writable READ
DataFormat SPECTRUM
DataType DevDouble
MaxDimX 4096
MaxDim¥ 0 05
Unit
StandardUnit No standard unit
DisplayUnit No display unit
Format 9%6.26
MinValue Not specified
0
Read Plot
05
-
0 50 100 150 200 [221] 250
DONE: GET http://localhost:10001 i j_test/1 il e o

™ [Jive 7.21 [tangobox:) Tango Webapp -Moz

Fig. 8: A screenshot of Tango WebApp in a browser

To play with Tango WebApp make sure that the ‘tangobox-web‘ container is running (use docker start
tangobox—web to start it from a terminal). Then, you may open a browser with a related desktop icon. Use
username tango-cs and password tango to log-in.

REST API

Tango Controls specifies REST API interface and provides its reference implementation. For details see REST API
documentation

The TangoBox comes with REST API installed. Related desktop icon opens a web browser pointing to REST API
interface. The REST server requires authentication. User is fango-cs and password is fango.

48 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

localhosk:10001/tango/res; X

C (@ localhost:1c

JSON Raw Data Headers

Save Copy Collapse All Expand All

name :
host:
port:
winfo!:
o:

o S

[=x T) B <4

=

v o
* 10:
»1l:
w12:

13:

wdevices:

If you would

"sys/database/2"
"tangobox"
"legea"

"TANGD Database sys/database/2"

"Running since 2019-05-21 08:14:46"

"Devices defined = 245"

"Devices exported = 244"
"Device servers defined = 51"
"Device servers exported = 48"

"Device properties defined = &6l [History lgth = 1368]"

"Class properties defined = 266 [History lgth = 1244]1"

"Device attribute properties defined = 151 [Histeory lgth = 369]"
"Class attribute properties defined = @ [History lgth = @]"

"Object properties defined = 3 [History lgth = 4]"
"http://localhost:10001/tango/rest/rcd/hosts/tangobox/10000/devices"”

Fig. 9: A web browser window presenting JSON response of the Tango REST server

like to play with it with other tools (Python, curl) it is avaialabe at the following address:

http://localhost: 10001 /tango/rest/rc4/hosts/tangobox/10000.

Sardana

Sardana is a software suite for Supervision, Control and Data Acquisition in scientific installations. I t aims to reduce
cost and time of design, development and support of the control and data acquisition systems. For more information
about it please refer to Sardana documentation.

4.8. Virtual Machine 49

http://www.sardana-controls.org

Tango Controls Documentation, Release 9.3.4

@ Applications Places i B =) 1100

sardanaGui

File View Taurus Tools Panels Help
T3 - LoadPerspectivess ¥ - - T

Experiment Config ® Sequences

CIEL 0 @ & Full sequence plot

Measurement Group | Snapshot Group | Storage
Macro: |ascan

Active Measurement Group | mntgrp01 2 | [+ -
) Macro Parameters Progress Pause
@ 4 Fees
ascan [gap01,0.0,1.5,100,1.0]

o Channel /enabled EMoutput Shape DataType EPlotType PlotAxes & Timer *Monitor Synchroniz, o Synchronizi Conditioning Normalizatio
o cto1 true true No <idx> cto1 cto1 software Trigger No
o cto2 true true No cto1 cto1 software Trigger No
o cto3 true true No cto1 cto1 software Trigger No
o ctoa true true No cto1 cto1 software Trigger No
o zerodot true true i Float64 Spectrum <mov> cto1 cto1 software Trigger No

Parameter Value
motor 9ap01
start_pos 0.0
final_pos 1.5
nrinterv 100

integ_time 1.0

Manual = Experiment Config | Macros MacroDescription DoorOutput DoorDebug DoorResult

Trend1D - <mov> ®
-

gap01

2 Jive7.21 [tangobox:] Terminal @ SardanaGul

Fig. 10: SardanaGUI in action

To play with Sardana you may double-click the SardanaGUI icon on the desktop or run it from a terminal (type
SardanaGUI).

Cumbia

Cumbia is a new library that offers a carefree approach to multi-threaded application design and imple-
mentation. Written from scratch, it can be seen as the evolution of the QTango library, because it offers a
more flexible and object oriented multi-threaded programming style.

For more details please check Cumbia webpage and source repository.
Cumbia is installed in /usr/local/cumbia-1ibs. This directory is added to 1d’s default search path.

To see an example Cumbia application, please run below command or use desktop shortcut CumbiaClientDemo:

cumbia client sys/tg_test/1l/double_scalar

50 Chapter 4. Installation

https://elettra-sincrotronetrieste.github.io/cumbia-libs/
https://github.com/ELETTRA-SincrotroneTrieste/cumbia-libs

Tango Controls Documentation, Release 9.3.4

QumbiaClient

sys/tg_test/1/double_scalar
97,44
1000
800 |
600 |
400
200 |
0 -
T T T T T T
o o) o) o
£ 5 ~ v o RS
ey = & o &> Fo
S S S S S S
Write
sys/tg_test/1/double_scalar 100 Write
Write Period | 1000 % | PolledRefresh - Apply
sys/tg_test/1/double_scalar Set sources Unset Sources
Fig. 11: Cumbia demo application
PANIC/PyAlarm

PANIC Alarm System is a set of tools (api, Tango device server, user interface) that provides: Periodic
evaluation of a set of conditions, Notification (email, sms, pop-up, speakers), Notification (email, sms,
pop-up, speakers), Keep a log of what happened. (files, Tango Snapshots), Taking automated actions
(Tango commands / attributes), Tools for configuration/visualization.

The Panic package contains the python AlarmAPI for managing the PyAlarm device servers from a client
application or a python shell. The panic module is used by PyAlarm, Panic Toolbar and Panic GUI.

To launch PANIC GUI, use desktop shortcut PANIC.

4.8. Virtual Machine 51

Tango Controls Documentation, Release 9.3.4

® Applications Places ty B =) osss

File Tools Help
B <
Sort: State = @
State =
Filter: Update save As
N - = ALARM: tg_test
show Active Only [select All/None [
@ to test - UNACK - 2019-05-21 09:47:17 - test/pyalarn/1 - TangoTest alarms Tag: [eg_test]
Disabled:
Acknowledged: [
Device: test/pyalarm/1 &
Priority: WARNING
TangoTest alarms
Description:
Annunciators:
Formula:
2019-05-21 09:58:28: Showing 1 * alarms, 1 in database. © Evaluate
& Refresh/Sort List T INew % Delete = Edit 29 Show Values

E9 PANIC7.1.2 (@tang. E9 PANIC Alarm Panel (<.

Fig. 12: PANIC GUI application

TangoBox 9.2

Intended audience: beginner users, beginner developers, beginner administrators

TangoBox is a VM image running Tango Controls system and its various tools. It is intended to be used for demon-
stration and training. It also simulates distributed deployment by using Docker.

Download

The latest version (RC11) of the TangoBox 9.2 can be downloaded from here.

What is installed

Below there is list of provide packages/features. Please note that some of them are installed as docker container and
maybe switched off (stopped) and requires to be switched on for being explored, see Switching containers on and off

e Tango 9.2.5

e PyTango 9.2.2
e Taurus 4.2.2
* QTango

* iTango

* Tango Access

s Jupylango

52 Chapter 4. Installation

http://ftp.esrf.fr/pub/cs/tango/TangoBox-9.2_RC11.ova

Tango Controls Documentation, Release 9.3.4

* PANIC

* Bensikin

* Mambo

* Docker

 Linac system simulation (as docker container tangobox-sim)

* HDB/TDB, SNAP DS (as docker container tangobox-archiving)

e HDB++ (as docker container tangobox-hdbpp)

* SerialLine, Modbus and PyPLC device server (as docker container tangobox-com)
» mTango + restAPI, Tango WebApp (as docker container tangobox-web)
» E-giga (as docker container tangobox-egiga)

e PyAlarm DS on each container

e PyCharm

* Visual Studio Code

* ModbusPal to simulate Modbus

e Sardana 2.3.2

First steps

First of all you have to download latest release of VirtualBox. It can be downloaded from www.virtualbox.org .
Simply install it and start the program.

» TangoBox is released in .ova extension so it can be easily imported.
¢ Select import and choose downloaded TangoBox file

¢ If you want, you can change VM’s configuration (i.e graphics, RAM). It is highly recommended to increase
default RAM size

4.8. Virtual Machine 53

https://www.virtualbox.org/

Tango Controls Documentation, Release 9.3.4

€ |Import Virtual Appliance

Appliance settings

These are the virtual machines contained in the appliance and the suggested
settings of the imported VirtualBox machines. You can change many of the
properties shown by double-clicking on the items and disable others using the

check boxes below.

Description Configuration ~
Virtual System 1

'-Z,"é Name TangoBox

=] Guest OS Type “7 Ubuntu (64-bit)

i} CPU 2

" RAM 1942 MB

%) DVD

(¥ USB Controller

@+ Sound Card ICH AC97

®l Network Adapter Intel PRO/1000 MT Desktop...

{) Storage Controller (IDE) PllX4

{) Storage Controller (IDE) PlIX4 N

[] Reinitialize the MAC address of all network cards

Appliance is not signed

Restore Defaults Import Cancel

Fig. 13: A virtual machine settings window.
You may change number of CPUs and increase RAM size. Memory size has major impact on VM performance.

54 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

* Wait for VirtualBox to import machine
After importing the VM image to VirtualBox you may start it.
» Username is: tango-cs
e Password is: tango
tango-cs user has sudo rights, so he may invoke commands as superuser with command sudo.

You may explore the Tango Controls feature by clicking related shortcuts on the Desktop.

Note: Plese note that some shortcuts are related to features running on containers. Please start related container first.
See the following section.

Switching containers on and off

Some of the features of Tango are provided inside pre-build docker containers. These can be switched on and off by
starting or stopping related containers. Containers behave similar to virtual machines with they own network cards
and operating system stack, however, lacking full separations.

To start a container, open terminal and invoke docker start {container-name}. For example, to star a linac
simulation use the following statement:

’docker start tangobox—-sim

To stop a container, open terminal and invoke docker stop {container-name}. For example, to stop a linac
simulation use the following statement:

’docker stop tangobox-sim

To see which containers are running please, call docker ps

Deployment structure
Network

Containers are created withing their own subnet: 172.18.0.0/16. The network is called tango_nw The subnet was
created with the following docker command:

docker network create —--driver=bridge --subnet=172.18.0.0/16 —--opt com.docker.network.
—bridge.enable_icc=true \

——-opt com.docker.network.bridge.host_binding _ipv4="0.0.0.0" —--opt com.docker.network.
—bridge.mtu=1500 \

——opt com.docker.network.bridge.enable_ip_masquerade=true tango_nw

Containers are assigned static IPs. List of the IPs assignment maybe seen in /etc/hosts. Use command cat
/etc/hosts to see its contents.

Containers and images dependency

Each container is based on its image. All images are already build but, if neccessary, Dockerfiles are stored in home /
Dockerfiles directory. Below is the list of all containers and corresponding images:

4.8. Virtual Machine 55

Tango Controls Documentation, Release 9.3.4

Container Image Remarks
tangobox-com com .
tangobox-sim sim .
tangobox-archiving archive .
tangobox-hdbpp hdbpp .
tangobox-web web .
tangobox-egiga egiga .
tangobox-sardana sardana
. base Base container
. ubuntu Ubuntu image to build others

Some device servers may be stopped when launching containers. It is so to get better performance (high cpu and ram
usage). To control and start/stop particular DS according to your needs, use Tango Manager (Astor) to it.

Example applications
Modbus simulation

To simulate Modbus, we suggest to use ModbusPal. To do so, use ModbusPal (simulation) desktop shortcut. Once
it is started, declare new modbus slave by clicking ADD. Choose 1 and name it 10.0.2.15. Now click “eye” button in
modbus slaves section and add at least 10 holding registers. You can change their values according to your needs.

After that, use RUN button to start simulation. Values in registers can be changed by clicking “eye” button in Modbus
slaves section.

Keep in mind that in ModbusPal, registers are counted from 1 while on DS from 0!

To monitor changes, use ATKPanel started from Jive. Both ModbusComposer and PyPLC have two attributes config-
ured:

* ModbusComposer: Temperature uses 4th; Pressure uses Sth register in ModbusPal

* PyPLC: Voltage uses 6th; Flow uses 7th register in ModbusPal

56 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

ons Places 3y Bl =) 1:02PM % tango
user = tango-cs

d s pw = tango

TaurusApps int £ raining

v Link settings
% [File_view preferences Help e
JDraw. I com/modbus/composer I:E
TCP Port:
Record

frhe device is ON [
asci | [welp | console |

Learn

Master | scripts]

Modbus slaves

N x

LM
B ~ckvioni Mo Address | Value Name | Binding
10

Temperature [200 [-]
pressure [59.30 []

Elinac

Automation
o

Jlinac

Adding registers completed.

TaurusGUiDemo

Hdb_ Viewer:

[Welcometo TangoB... & [Start Containers]) Terminal

Fig. 14: View on a ModbusComposer device and configured ModbusPal simulator.

JupyTango
JupyTango is a Jupyter featuring Tango related kernels. With JupyterLab you may interact and do scripting for Tango
through a web browser.

@ Applications Places B =) 3:22PM 1% tango-cs
Jupyteriab Alpha Preview - Mozilla Firefox

Z JupyterLab Alpha Pre

@ localhost:8889/!: € ||Q search

File Notebook Editor Terminal Console Help

P + -] 3 < B console2 X M Consoled X
Ela
| ame . Last Modiied o (618 £ T Sy In [3]: pta sys/tg_test/1/double_image_ro
£ | &b a month ago
& | o oeskiop wcay o sysitg_test1/wave @ 2017-11-15 15:22:50 3 1 Sy tesUdouble_imago.ro @ 20171115 152122
£ Dockeriles amonth ago]
8| £ Documents 2 months ago
£ | P Downloads a month ago
& | 0 weners amontn ago
£ JupyTango 2 montns ago
2| 8 zmq 2 months ago 054
Flaw 2 montns ago
£ Modbusal amonth ago
£ Music 2 montns ago
£ notebooks 2 montns ago
19 Pictures aday ago o
£ Public 2 montns ago
£ pycharm-community-2. 2 montns ago
£ PyMea 2 montns ago
£ share 2 montns ago
[=F aday ago sl
£ Tempiates 2 montns ago
£ tmp aday ago
£ training 2 montns ago
£ videos 2 montns ago
[examples.deskiop 2 months ago
[tango-db-backup.sql amonth ago iy - + + + + +
o 50 100 150 20 20
| In[]

Fig. 15: Browser window with JupyTango in action

In case you want to try it, here’s the procedure:

1. start jupyterlab using our dedicated script: jupytango

4.8. Virtual Machine 57

http://jupyter.org/

Tango Controls Documentation, Release 9.3.4

2. anew browser tab is automagically opened with the right URL: 1ocalhost :8888/1ab?. Please be patient,
it may take a while on VM.

3. the very first connection to the service requires a ‘token’ which is printed in the jupytango console
4. once in jupyterlab, click the JupyTango icon to open a notebook with the appropriate kernel
5. enjoy!

Here are the JupyTango additions to itango:

Plotting a tango attribute

Syntax:

pta [options] <tab for device selection> + <tab for attribute selection>

Supported options:
e -w or —width: plot width in pixels
* -h or —height: plot height in pixels

Monitoring a tango attribute: Syntax:

tm [options] + <tab for device selection> + <tab for attribute selection>

Supported options:
e -w or —width: plot width in pixels
* -h or —height: plot height in pixels
* -p or —period: plot refresh period in [0.1, 5] seconds - defaults to 1s
* -d or —depth: scalar attribute history depth in [1, 3600] seconds - defaults to 900s

You can try to kill the monitored device will the JupyTango monitor is running to see how errors are handled.

JLinac and Elinac simulation

To start simulation, you need to run tangobox-sim container (use docker start tangobox-sim to start it from
a terminal). It is also important to make sure that all related device servers are running. The easiest way to do it is to
check it in Astor - a bulb next to tangobox-sim should be green.

Don’t worry about warnings during Elinac’s initialization.

58 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

=

JDraw,

ATk
PANEL

Atkpanel

Elinac

{Uiinac]

Jlinac

TaurusGUiDemo

Hdb_ Viewer:

TANGO Manager -7.1.2 - 04-09-2017 1
ew Command Tools Help

TangoBox

TANG,,i\Control System

2 T\, Tango Database
nysas Tang
@ localhosti 10000
@ Access Control
¢ @ Miscellaneous
9 tangobox-archive
@ tangobox.com
@ tangoboxhdbpp
@ tangobox.sim
@ tangoboxam
@ tangoboxweb

File View Commands

ty Bl &=) 12:27PM 1% tango-cs

Modl Power Out|0.25 MW Modl VPFN
| Mod2 Power Out[0.25 MW Mod2 VPFN

File [NO FILE LOADED

mod1

oA [etaits . |
[off.. || Lowneating... |[standby |[on || Reset |

EZZZZA v pA7A 200

g feection1q [f section2) 223.00

5eam sto

RF

modulator 1 modulator 2 mod2

14 min 32 sec_remaining
temporization

tangobo:
tango-c
'tangobo:
tango-c

docker start tangobox-sim

TANGA.9

TANGO Manager-7.1

to TangoB. [Start Containers] B3 JLinac 4.1 (TangoB

Fig. 16: JLinac simulation running.

HDB/TDB/SNAP Archiving (Mambo, Bensikin)

Prior to use HDB/TDB (Mambo) or SNAP (Bensikin) you need to make sure that the tangobox-archiving container
and related device servers are running:

e Call docker start tangobox—archive on aterminal.

* Start Astor and check if the tangobox-archive node is green.

Then, you may start Mambo or Bensikin by clicking icons on the desktop.

4.8. Virtual Machine

Tango Controls Documentation, Release 9.3.4

® Applications Places ty Bl &=) 12:57PM {% tango-cs

File ACs VCs Tools Help
“DeEwey

‘Archiving config

start tangol

[0 New[» test 1120171008 13:52:03.084 -]
>

stop tangob: [hdb_example : 2017-11-06 12:48:47.906

hdb_example Created : 2017-10-06 13:51:20135 Lastr ||| % test_L: 2017-10-0613:52:03.044 |

cker start tangobox-archive

| Fully cxpand this wee || Archiving Neme: test 1 Created: 2017-09-29 13:02:38.342 Last modified; 2017-10-06 13:52:03.044
HDB
£ TangoBox V10000 i & Fully expand this tree + Number and Boolean Scalars | string and state Scalars|

Mode Variable
B0 Periadic Periad and Boolean

& g gﬁ]est Information loaded [] substract mean

-0 tg test Be
. gin: 2017-11-06 08:56:30.061, End: 2017-11-06 12:56:30,061
7 double_scal e B

© float_scalar
-, long_scalar
- state

" string_scal

7 double_scalar

7 float_scalar

7 long_scalar

7 string_scalar
TANGO Manager -7.1.2 - 04-09-2017 1

Eile View Command Tools Help

TangoBox

TAN G,j\ Control System

A
L3 Mgsx;‘ Tango Database
@ localhost:10000

@ Access Control
% @ Miscellaneous

° Timerange

¢ @ tangobox.com

TaurusGliDemo @ tangoboxhdbpp Date range:
@ tangoboxsim

@ tangoboxvm Start date:

@ tangoboxweb

< End date:

Dynamic Date Range

[st | Moo & Modt || acions
—— —— DO D DED . B

Hdb_ Viewer:

¥ 06-11-17 12:56:30.196 - INFO : extract from DB for sys/tg_test/L/string_scalar took 4 ms.

[Welcome to TangoB. TANGO Manager-7.1 [Start Containers]

Fig. 17: Screen of running Mambo
Please take note of a green bulb of the rangobox-archive node in the Astor window.

HDB++ Archiving

To use HDB++ and its tools (HDB Configurator and HDB Viewer) please make sure that the tangobox-hdbpp
container and related device servers are running:

e Call docker start tangobox-hdbpp on a terminal.
 Start Astor and check if the tangobox-hdbpp node is green.

Then, you may start HDB Configurator or HDB Viewer by clicking icons on the desktop.

E-giga

E-giga is a web application for archiving data visualization (HDB/TDB and HDB++). The TangoBox deployment
uses HDB/TDB.

60 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

eGigazm - Mozilla Firefox

<r eGiga2m x e

() tangobox-egiga ¢ | |Q search T Ba ¥+ @ 5

start [2017-11-1400:0000 [5 €% GigaEm 2071112 000
stop |2017-11-1500:00:00 5
¥ 0 sys 250
¥ [tg_test
YE1

200
;I double_scalar

% float_scalar
;I;Io scalar 150
% State

% string_scalar
100

50

sys/tg test/{/double scalar
sysitg_test/1/long_scalar

16:37:45 16:37:50 16:37:85 16:36:00 16:38:05 16:38:10 16:38:15 16:38:20

export to png

Fig. 18: E-giga in a web browser window

To use e-giga following conditions must be fulfilled:
* tangobox-archive and tangobox-web containers must be started and archiving device servers must be running

* use i.e. Mambo to enable data archiving for HDB database. It is required. If you do not see any attributes in
E-giga it is probably due to archiving being disabled. Check with Astor if the tangobox-archive LED is green
and with Mambo if there are any attributes configured to be archivied.

To open browser with E—giga click on the relate desktop icon.

Note: Please keep in mind that you should not rebuild tangobox-web image because its configuration is not included
in Dockerfile (it requires in-container config).

Tango WebApp

Tango may be available through a web browser. Tango WebApp is a general purpose Tango web application. You may
try it on the TangoBox.

4.8. Virtual Machine 61

Tango Controls Documentation, Release 9.3.4

@ Applications Places ty Bl 3 «) 434PM % tangocs
(] Tango Webapp - Mozilla Firefox

[Tango webapp

@ # tangobox-web e ||Q sea "B AD R =
55 otmot Zrirn
TANGA, i i hitp:/tangobox web:2080 | Invalid mixing source
s Devices Tree E=1 Device Test Panel
s @ Dashooara ™ * >
3 [type to fiter [sys/test/1@tangobox-vm :10000] exported true
- (J) ntpu/tangobox-web:2020 Q = i Commands fuiiTs
©- () tangobox-vm:10000 Y| type toritter
@ [alam y
&) arohving 3 wave
& [com boolean image
(1 controler soolean image_ 1o
©-) Door image._
& [aserver double_image
& [elin 05 double_image: 10
& [expehan
() loregister
@ [Macroserver
[
G motgr Name wave
& () motor . Label wave
& @ pm Witable READ
s ' Data format SPECTRUM
Sl e
s Max Dim X 4096
o [sys MaxDimY 0
€ (1} access_control Unit
© [l catavase -05
Read Plot
© [, Dbebug
& [rest
(R
© [g test measure date: Tue Nov 14 2017
© (] tango N quality: FAILURE
© [test Eg‘;sm
© [riggergate 0 7] 50 100 150 200 250 <Idoctype htmi><htm lang="en"><head>
<title>HTTP Status 500 — Intermal Server
DONE: GET g ® O

) tango-cs@tangobox- TANGO Manager-7.1... ® Jive 7.17 [localhost:1 9 Morilla Firefox 9 Tango Webapp -Mozi

Fig. 19: A screenshot of Tango WebApp in a browser

To play with Tango WebApp make sure that the ‘tangobox-web‘ container is running (use docker start
tangobox—web to start it from a terminal). Then, you may open a browser with a related desktop icon. Use
username tango-cs and password tango to log-in.

REST API

Tango Controls specifies REST API interface and provides its reference implementation. For details see REST API
documentation

The TangoBox comes with REST API installed. The tangobox-web container must be started to play with it. Invoke
docker start tangobox-web.

Related deskto icon opens a web browser pointing to REST API interface. The REST server requires authentication.
User is tango-cs and password is tango.

62 Chapter 4. Installation

Tango Controls Documentation, Release 9.3.4

Mozilla Firefox

[« tangobox-web:8080/t *

(© tangobox-web:8080/tango/reslIZIll v | € | @ search T B8 ¥+ » =
| Raw Data Headers
1 save Copy Filter JSON
name: "sys/database/2"
host: "TangoBox -yM"
port: 16000
info:
o: "TANGOD Database sys/database/2"
| 1: o
| 2: "Running since 2017-11-14 15:45:29"
4; "Devices defined = 241"
5: "Devices exported = 237"
6 "Device servers defined = 36"
1 "Device servers exported = 34"
8: o
9: "Device properties defined = 979 [History lgth = 4708]"
10: "Class properties defined = 264 [History lgth = 1364]"
11: "Device attribute properties defined = 142 [History lgth = 628]"
12: "Class attribute properties defined = 8 [History lgth = @]"
13: "Object properties defined = 12 [History lgth = 17]"
devices: "http://tangobox-web:8080/tango/rest/rcd/hosts/tangobox-vm/10000/devices"

Fig. 20: A web browser window presenting JSON response of the Tango REST server

If you would like to play with it with other tools (Python, curl) it is avaialabe at the following address: http://tangobox-
web:8080/tango/rest/rc4/hosts/tangobox-vm/10000.

Note: Please keep in mind that you should not rebuild tangobox-web image because its configuration is not included
in Dockerfile (it requires in-container config).

Sardana

Sardana is a software suite for Supervision, Control and Data Acquisition in scientific installations. I t aims to reduce
cost and time of design, development and support of the control and data acquisition systems. For more information
about it please refer to Sardana documentation.

4.8. Virtual Machine 63

http://www.sardana-controls.org

Tango Controls Documentation, Release 9.3.4

fy Bl &=) 3:4a2pM I

user = tango-cs
pw = tango
DIME it

Load Perspectivesy |

[Trend 1D - <mov>

JDraw,

Dooroutput | DoorResult | DoorDebug | Trend1D - <mov>

f sequences MacroDescription
®/ (2 B) » @ ©& Full sequence plot Syntax:

[Macro: | ascan

Macro Parameters Progress Pause
ascan [gap01,0.0, 1.5, 100, 0.1]

Jlinac

TaurusGUiDemo Parameter Value

motor

start_pos
final_pos
nr_interv.

integ_time

Sequences | Macros Experiment Config Manual | MacroDescription

Macro ascan at 79 % of progress.

[Terminal]

Fig. 21: SardanaGUI in action

To play with Sardana the tangobox-sardana container has to be started. Open a terminal and call docker start
tangobox—sardana. Then, you may double-click the SardanaGUI icon on the desktop or run it from a terminal
(type SardanaGUI).

4.9 PyTango and Taurus on Windows

Intended audience: administrators, developers

4.10 Binary packages

Intended audience: users, developers, administrators

Table 1: Binary packages for Tango are maintained to make it easier for
developers to install the latest builds of Tango without having to compile

them.
Tango Source Dis- | C++ source package with Java binaries
tribution
PyTango Library for device servers and clients in Python
JTango Library for device servers and clients in Java
TangORB Library for device servers and client in Java on Android
Windows Windows 32-bit/64-bit
Conda packages Tango conda packages

64 Chapter 4. Installation

https://github.com/tango-controls/TangoSourceDistribution/releases/latest
https://github.com/tango-controls/TangoSourceDistribution/releases/latest
https://github.com/tango-controls/TangoSourceDistribution/releases/latest
https://pypi.org/project/pytango/
https://github.com/tango-controls/pyTango/releases/latest
https://bintray.com/tango-controls/generic/JTango-9-LTS/_latestVersion
https://sourceforge.net/projects/tango-cs/files/tools/TangORB-8.3.5_jeromq_android.jar/download
https://github.com/tango-controls/cppTango/releases/latest
https://github.com/tango-controls/cppTango/releases/latest
https://anaconda.org/tango-controls/repo

Tango Controls Documentation, Release 9.3.4

4.11 Patches

Intended audience: developers, administrators

To apply any patches downloaded from this page, first go to the directory where Tango source distribution has been
extracted e.g. cd ~/tango-9.3.5, then type the command :

patch -pl < "patch_file"

4.11.1 omniORB patches

omniORB 4.2 bug (described in bug 794) is fixed in omniORB >= 4.2.2 or if you apply dii_race.patch patch file to
omniORB < 4.2.2.

To apply this patch, copy the patch file to the directory where you extracted omniORB e.g. ~/omniORB-4.2.1, then
type the command:

patch -p0 < dii_race.patch

4.11.2 Version 9.3.5 source patches

None yet.

4.11.3 Version 9.3.4 source patches

None yet.

4.11.4 Version 9.2.2 source patches

Bug 787, Bug 788, Bug 789, Bug 790, Bug 791 and Bug 792 are all fixed if you apply p922_1.diff patch file.

Then go to your build directory and run make followed by make install.

4.11.5 Version 9.1.0 source patches

Bug 745, Bug 748, Bug 749, Bug 752 and Bug 753 are all fixed if you apply p910_2.diff patch file.

Then go to your build directory and run make followed by make install. As usual, this patch assumes the previous
patch(es) for the Tango release has been already applied.

Bug 741 is fixed if you apply p910_1.diff patch file. Then go to your build directory and run make followed by make
install.

4.11.6 Version 8.1.2 source patches

Bug 662, Bug 663: These two bugs are fixed if you apply p812_4.diff patch file. Then go to your build directory and
run make followed by make install.

This patch supposed that previous one (p812_3.diff) has been already applied.

4.11. Patches 65

https://sourceforge.net/p/tango-cs/bugs/794/
http://ftp.esrf.fr/pub/cs/tango/Patches/dii_race.patch
https://sourceforge.net/p/tango-cs/bugs/787/
https://sourceforge.net/p/tango-cs/bugs/788/
https://sourceforge.net/p/tango-cs/bugs/789/
https://sourceforge.net/p/tango-cs/bugs/790/
https://sourceforge.net/p/tango-cs/bugs/791/
https://sourceforge.net/p/tango-cs/bugs/792/
http://ftp.esrf.fr/pub/cs/tango/Patches/p922_1.diff
https://sourceforge.net/p/tango-cs/bugs/745/
https://sourceforge.net/p/tango-cs/bugs/748/
https://sourceforge.net/p/tango-cs/bugs/748/
https://sourceforge.net/p/tango-cs/bugs/752/
https://sourceforge.net/p/tango-cs/bugs/753/
http://ftp.esrf.fr/pub/cs/tango/Patches/p910_2.diff
https://sourceforge.net/p/tango-cs/bugs/741/
http://ftp.esrf.fr/pub/cs/tango/Patches/p910_1.diff
https://sourceforge.net/p/tango-cs/bugs/662/
https://sourceforge.net/p/tango-cs/bugs/663/
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_4.diff
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_3.diff

Tango Controls Documentation, Release 9.3.4

Bug 646: This bug is fixed if you apply p812_3.diff patch file. Then go to your build directory and run make followed
by make install.

This patch supposed that previous one (p812_2.diff) has been already applied.

Bug 631, Bug 632, Bug 638: These 3 bugs are all fixed if you apply p812_2.diff patch file. Then go to your build
directory and run make followed by make install.

Bug 624, Bug 625: These 2 bugs are all fixed if you apply p812_1.diff patch file. Then go to your build directory and
run make followed by make install.

4.11.7 Version 8.0.5 source patches
Bug 528, Bug 530, Bug 531, Bug 533, Bug 534, Bug 536: These 6 bugs are all fixed if you apply p805_1.diff patch
file. Then go to your build directory and run make followed by make install.

Bug 545, Bug 546: These 2 bugs and some DeviceProxy class thread safety issues are all fixed if you apply p805_2.diff
patch file. Then go to your build directory and run make followed by make install.

66 Chapter 4. Installation

https://sourceforge.net/p/tango-cs/bugs/646/
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_3.diff
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_2.diff
https://sourceforge.net/p/tango-cs/bugs/631/
https://sourceforge.net/p/tango-cs/bugs/632/
https://sourceforge.net/p/tango-cs/bugs/638/
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_2.diff
https://sourceforge.net/p/tango-cs/bugs/624/
https://sourceforge.net/p/tango-cs/bugs/625/
http://ftp.esrf.fr/pub/cs/tango/Patches/p812_1.diff
https://sourceforge.net/p/tango-cs/bugs/528/
https://sourceforge.net/p/tango-cs/bugs/530/
https://sourceforge.net/p/tango-cs/bugs/531/
https://sourceforge.net/p/tango-cs/bugs/533/
https://sourceforge.net/p/tango-cs/bugs/534/
https://sourceforge.net/p/tango-cs/bugs/536/
http://ftp.esrf.fr/pub/cs/tango/Patches/p805_1.diff
http://ftp.esrf.fr/pub/cs/tango/Patches/p805_1.diff
https://sourceforge.net/p/tango-cs/bugs/545/
https://sourceforge.net/p/tango-cs/bugs/546/
http://ftp.esrf.fr/pub/cs/tango/Patches/p805_2.diff
http://ftp.esrf.fr/pub/cs/tango/Patches/p805_2.diff

CHAPTER B

Getting Started

Intended audience: beginners, all, Programming language: all
In this section we will guide you step-by-step to help you getting started with Tango-Controls.

We assume that Tango-Controls has been already installed in your environment. Otherwise, if you have to install
Tango-Controls on your own, please, read the installation guide first: Installation

Note: You may identify yourself with one of the following roles and use proviodeds links:

End user Index | End-user applications guide
Developer Index | How to develop for Tango Controls
Administrator | Index | Administration applications guide

Table of contents of this section:

5.1 First steps with Tango Controls

Intended audience: all, Programming language: all

* In the Overview you will find basic information on Tango Controls. It will let you understand concepts of Tango
Controls and help dancing it.

* You may also start with rrying Tango Controls either with a preconfigured virtual machine or installing basic
setup on your own computer.

¢ If you would like to install Tango Controls please look on Installation guides.
* To start connecting your devices to Tango Controls you should probably:
— browse Device Classes Catalogue to find device servers for your equipment

— read how to start a device server

67

http://www.tango-controls.org/developers/dsc/

Tango Controls Documentation, Release 9.3.4

— or read Your first C++ TANGO device class and follow a guide How to write your device class if your
device is not yet supported by any existing device server.

* To write your first C++ client see Writing your first C++ TANGO client.

¢ At the beginning you may also be interested in how to use provided tools: Jive, ATKPanel, Astor, JDraw or
Pogo.

* You may be also interested in the content of Tango Controls web page

5.2 End-user applications guide

Intended audience: user

If you are end-user you are probably interested in documentation for tools delivered with Tango Controls. Below, you
will find a list of tools a beginner user usually needs to know.

5.2.1 Jive

It is a tool used to configure components of the Tango Controls and browse a static Tango Database. See Jive Manual.

5.2.2 ATKPanel
ATKPanel is a simple application which shows (and allows to modify or invoke) device state, attributes and commands.

Thus it allows to test and control all devices in the system. The tool is delivered together with Tango Controls. It may
be opened as a stand-alone application or invoked from Jive. See ATKPanel Manual.

5.2.3 LogViewer

Tango provides a logging facility. You may use it with the LogViewer application delivered with Tango Controls.

5.3 How to develop for Tango Controls

Intended audience: developers, Programming language: all

Here you will find recipies on how-to develop the Tango Controls on various systems.

5.3.1 Getting started with JTango (Java implementation of Tango-Controls)

Intended audience: beginner developers, Programming language: java

Developing your first Java TANGO client
Developing your first Java TANGO device class

Intended audience: beginner developers, Programming language: java
In this section we describe how one can start developing Tango device server using Java.

Three methods will be described:

68 Chapter 5. Getting Started

http://www.tango-controls.org

Tango Controls Documentation, Release 9.3.4

1. Using jtango-maven-archetype

2. Using POGO

3. Starting from scratch
Prerequisites

e Java>1.7

* Maven >3

* Tango-Controls environment (Tango Database aka Tango host is deployed)

Using jtango-maven-archetype

Perhaps the simplest way to start to develop your first Tango device server in Java is to use jtango-maven-archetype.

Maven is an Apache project and it is widely used in Java development nowdays. More information can be found in
the Internet. Here we just name main features of Maven:

First of all Maven is a build system, i.e. it automatizes the build process of the project. As Maven is a plugin platform
various plugins are used to achieve the desired result e.g. define compilation target (aka javac —-target 1.8)or
package the project into a single executable jar.

Secondly Maven automatically manages dependencies (required versions are being automatically downloaded from
so called Maven central repository from the Internet).

Finally Maven provides a way to generate skeleton projects. This section is based on this feature.

So to start execute the following command:

$> mvn archetype:generate \
-DarchetypeGroupIld=org.tango-controls \
—-DarchetypeArtifactId=jtango—-maven—-archetype \
—-DarchetypeVersion=1.4

This command generates skeleton project using special Maven artifact that defines the template of the project. While
generating new project you have to define several properties:

 groupld - target project’s groupld. Typically it is reversed domain name of the company e.g. com.company

artifactld — target project’s artifactld. This is can be considered as the name of the target executable. This value
must follow java class naming conventions e.g. MyDevice

version — target project version. Simply the first version of the project e.g. 1.0-SNAPSHOT

package — Java package for newly generated class. Typically can be left as default i.e. groupld

license — name of the license under which the project is distributed e.g. LGPL-3, GPL, MIT etc

organization — name of the organization that maintains the project e.g. Company

organization-url — organization’s URL e.g. http://www.company.com

author-name — name of the author/maintainer e.g. JoeDoe

author-email — author/maintainer’s email e.g. joe.doe @ company.com

facility — facility at which project is being developed e.g. DESY, ESRF, etc

platform — Windows, MacOS, Unix/Linux etc. Typically Java projects will have A/l in this property

family — as in POGO. Typically Java high level projects will have SoftwareSystem in this property

5.3. How to develop for Tango Controls 69

Tango Controls Documentation, Release 9.3.4

* bus — bus to the device (underlying hardware) e.g. Serial. For Java this might be NA if there is no real hardware
associated with this Tango server.

* jtango-version — a version of JTango dependency or LATEST if you are know what are you doing.
Latest version of JTango is

The following output indicates that project has been successfully generated:

O B
[INFO] BUILD SUCCESS
[INEQ] — o o e e e

Now you can goto to the project folder and build it:

$>cd MyDevice
$>mvn package
$>java -jar target/MyDevice-1.0-SNAPSHOT. jar development

Assuming that Tango-Controls environment is set up properly (TODO ref) and MyDevice/development (TODO ref)
server is defined in the Tango Database the later command will start the device server.

Now using your favorite IDE open the newly generated project and develop your JTango server. Please read more in
JTango documentation.

Using POGO
See POGO documentation.

Starting from scratch

Example Java device and detailed documentation can be found in the JTango documentation.

For a more complete guide on JTango please refer to the JTango documentation.

5.3.2 Getting started with cppTango (C++ implementation of Tango-Controls)

Intended audience: beginner developers, Programming language: c++

70 Chapter 5. Getting Started

https://jtango.readthedocs.io/en/latest/
https://jtango.readthedocs.io/en/latest/
https://jtango.readthedocs.io/en/latest/

Tango Controls Documentation, Release 9.3.4

Writing your first C++ TANGO client

Intended audience: beginer developers, Programming language: c++

The quickest way of getting started is by studying this example :

1 / *
2 + example of a client using the TANGO C++ api.
3 */
4 #include <tango.h>
5 using namespace Tango;
6 int main(unsigned int argc, char x*argv)
7 {
8 try
9 {
10
11 //
12 // create a connection to a TANGO device
13 //
14
15 DeviceProxy =*device = new DeviceProxy ("sys/database/2");
16
17 //
18 // Ping the device
19 //
20
21 device->ping();
22
23 //
24 // Execute a command on the device and extract the reply as a string
25 //
26
27 string db_info;
28 DeviceData cmd_reply;
29 cmd_reply = device->command_inout ("DbInfo");
30 cmd_reply >> db_info;
31 cout << "Command reply " << db_info << endl;
32
33 //
34 // Read a device attribute (string data type)
35 //
36
37 string spr;
38 DeviceAttribute att_reply;
39 att_reply = device->read_attribute ("StoredProcedureRelease");
40 att_reply >> spr;
41 cout << "Database device stored procedure release: " << spr <<,
—endl;
42 }
43 catch (DevFailed &e)
44 {
45 Except::print_exception(e);
46 exit (-1);
47 }
48 }

5.3. How to develop for Tango Controls 71

Tango Controls Documentation, Release 9.3.4

Modify this example to fit your device server or client’s needs, compile it and link with the library -ltango. Forget
about those painful early TANGO days when you had to learn CORBA and manipulate Any’s. Life’s going to easy
and fun from now on !

TANGO C++ Quick start

Intended audience: developers

This quick tutorial will guide you to some fundamental TANGO concepts and how to do the first steps.

Fundamental TANGO concepts

Before starting to work in TANGO, it is important to know at least some concepts.

TANGO is a control system framework, composed by a set of devices running somewhere on the network, that com-
municate each other through on CORBA and ZeroM Q. Everything which needs to be controlled is modeled as a Device.

Every device in the network is identified by the Fully Qualified Domain Name (FQDN), a unique case insensitive
name in the format:

tango://hostname.full.domain.name:port/domain/family/member

Usually the environment variable TANGO_HOST is used by clients/servers to know on which host and port the
Database server is running:

TANGO_HOST=tango://hostname.full.domain.name:port

or short form

TANGO_HOST=hostname:port

In this way is possible to refers a device as domain/family/member

eg. DishArray1/Receiver/01 LAB/PowerSupply/01

Each device has a series of attributes, pipes, properties and commands.

An attribute is identified by a name in a device and represents the data fields a Device wants clients to Read or Write
or receive Events. It has a value that can be read or can also be changed (read-write attributes). Each attribute has a
well known, fixed data type.

A pipe is a kind of attribute and it consists in a data stream or channel for exchanging a stream of any Tango data type.
Data types can be sent individually or grouped together in a Blob

A property is identified by a name in a device. It consists in a data stored in the database and used to configure Devices
at startup.

A command is also identified by a name and is the action of a device the clients needs to execute. A command may or
not receive a parameter and may or not return a value when it is executed.

Any device has at least a State and Status attributes and State, Status and Init commands. Reading the State or Status
attributes has the same effect as executing the State or Status commands.

Devices belong to a Device Class and are hosted in a Device Server.

The device class implements a generic Device behaviour. Properties are used to configure the specific Device. Device
Classes can be implemented in Python, C++ or Java.

TANGO devices live inside a operating system process called TANGO Device Server. This server acts as a container of
devices. A device server can host multiple devices of multiple TANGO classes. Devices are, therefore, only accessible
when the corresponding TANGO Device Server is running.

72 Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

A special TANGO device server called the TANGO Database Server will act as a naming service between TANGO
servers and clients. This server has a known address where it can be reached that is the addresses setted in
TANGO_HOST environment variable.

Step 1: installation

This chapter assumes that you have already installed Tango in your local computer or in your network. If you need to
install TANGO, please reference to the documentation.

Step 2: create a device class

A useful tool to create a TANGO Class skeleton is POGO. POGO is a tool that permits you the generate code and the
documentation of a class model in the different programming languages (c++, Java and Python).

5.3. How to develop for Tango Controls 73

Tango Controls Documentation, Release 9.3.4

TANGO Code Generator - 9.6.16 - 03-10-2018 09:13:27 -...

File Edit Tools Help

LW =y |

Palette: | | /| B & S i €F &

i

[A

Ta ngn[}uu: kStart

= nl
= . anes. TaNgoQuickStart

iiihh

& Class Properties
& Device Properties

¢+ Commands

g State
o Status

¢ [y Scalar Attributes

o TestAttribute
J*Spectrum Attributes
S Image Attributes
 Forwarded Attributes
@ Pipes
&% States

o i

=~ _Tango DeviceImpl
+ State

+ Status

+ ..

t .
+#»_TangoQuickStart

+ State
+ Status
=5 o

74

Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

In the example a c++ Tango class, named TangoQuickStart, has been created. To generate the code go to File ->
Generate and press OK in the window.

Generation Preference Window

- Browse
Output Path : |hemeftange-cs/Documents/TangeQuickStart

Files to be generated :

Device Class: m XMl file ® Code files

Linux: ® Makefile

Windows:) VC12 Project) wWindowsCMakelLists
Projects:) Eclipse Project

Documentation:) html Pages

oK Cancel

In order to compile properly the class, you need to add the packaging. Into POGO, go to File -> Export Package and
check all the headers. The tool will create a new folder with the packages.

Packaging Check Configuration

Author

Version number (1.0 |

Headers to be checked Functions to be checked

string.h Add Header Add Function
sys/time.h
sys/timeb.h Remove Remove

unistd.h

| 0K || Cancel

Once you created a skeleton and added the header, you can add your code into the class and compile it. In this section
you can find a guide how to implement a c++ device class. You may find more on device API /ere.

In this link you can find the POGO guide.

5.3. How to develop for Tango Controls 75

Tango Controls Documentation, Release 9.3.4

Step 3: compile the device class

To compile the files, go to the folder that you choose to store your class and execute the following command:

cd packaging

./autogen.sh

./configure —--prefix=$HOME/packaging
make

make install

If everything works, you will see the files in the src directory

root@tangobox: /home/tango-cs/Documents/TangoQuickStart/packaging/src# 1s
ClassFactory.cpp Makefile.in TangoQuickStart.h
ClassFactory.o TangoQuickStart TangoQuickstart.o

main.cpp TangoQuickStartClass TangoQuickStartStateMachine.cpp
i TangoQuickStartClass TangoQuickStartstateMachine.o
TangoQuickStartcCla
TangoQuickStart.cpp

Step 4: register the device

Open Jive and go to Edit —-> Create Server

Jive 7.19 [tangobox:10000]

File | Edit| Tools Filter
E Refresh Tree F5 - | 1 ||£
Change Tango Host =
Ser e —— tt. Alias | Property [==e

'z'f Create free property =
e: Show clipboard
% Clear clipboard
“EE [0 Show system property
S Nan+ FE5-5TV

% HdbaArchiver

%5 HdbExtractor

“& HDETDBArchivingWatcher
% Linac

% LinacMediumLevel

“ LinacSeqguencer

% Matteo

% ModbusComposer
Ak

=5 Sardana

Ak .

= Simurelay

% Snaparchiver

% SnapExtractor
% SnapManager

%5 Starter

% TangoAccessControl
% TangoRestServer

L A A A A A A A A A A

1]

Refresh

Fill the form as follow:

76 Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

Create/Edit a server

Server (ServerName/Instance)
TangoQuickStart/test

Class
TangoQuickStart

Devices
training-laboratory/quick-start/0|

Register server Cancel

Remember that in the server you must add the ServerName, that is the name of the Device Server and che instance.
In Class you have to insert che correct ClassName and in Device you can add one or more device, following the
convention:

domain/family/member

After, click Register server.

Step 5: start the device

In order to start the device, using the command line, go to the folder where you compiled your c++ class

cd packaging/src/

and use the command with the following sintax:
<TangoClassName> <instance>

Where <TangoClassName> is the name of the class that you created, and the instance is the name of the instance into
the TANGO Database.

In the example:

root@tangobox: /home/tango-cs/Documents/TangoQuickStart/packaging/src# . /TangoQui
ckstart test

Ready to accept request

If everything is ok, the following message appears:

5.3. How to develop for Tango Controls 77

Tango Controls Documentation, Release 9.3.4

Ready to accept request

Step 6: explore the device

When finish, you can explore your device using Jive.

Jive 7.19 [tangobox:10000]

File Edit Tools Filter c ds | Attributes | Pipe | Admin

| ‘ m . m e ||Server:/TangoQui(kStam‘testﬂ'angoQui(kStartftraining-lahoramry,‘qui(k-stam‘n Argin value

“Server | Device | Class | Alias | Att. Alias | Property | Device Info 3 | ‘ |
o ||| Ipevice Info Init

o %% LinacMediumLevel —|: Argin Type Argout Type
P :
o & LinacSequencer . o State DevVoid DevVoid
o % Matteo Device: training-laboratory/quick-start/ |Status
o & Modbus E pre_id: IDL:Tango/Device_5:1.0 ‘ Show description l
o % ModbusComposer :| [tlop_version: 1.2
& 4% sardana P host: 10.0.2.15 {10.0.2.15)
o Bk || lalternate addr.: 172.18.08.1 (tangobox) Execute
= Simurelay
o & SnapArchiver altstzlrnate addr.: :gggi?ﬂl (a) =
o= % SnapExtractor il [port: . ‘ Plot ‘
A M Server: TangoQuickStart/test
L : i el Server PID: 3876
af Exported: true
& TangoAccessControl ‘| Nast_exported: 6th February 2019 at 17:30:41
¢ % TangoQuickstart —|| | [last_unexported: ?

¢ % test
¢ & TangoQuickstart

¢ ¢& ftraining-laboratory/quick-start/0 Polling Status
- E Properties :
& Polling :
EX Event
%y Attribute config —
Pipe config

o= k3 Attribute properties |
Logging = Refresh

78 Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

Your first C++ TANGO device class

Intended audience: beginner developers, Programming language: c++

The code given in this chapter as example has been generated using POGO. Pogo is a code generator for Tango device
server. See POGO home page for more information about POGO. The following examples briefly describe how to
write device class with commands which receives and return different kind of Tango data types and also how to write
device attributes The device class implements 5 commands and 3 attributes. The commands are :

e The command DevSimple deals with simple Tango data type

¢ The command DevString deals with Tango strings

* DevArray receive and return an array of simple Tango data type

¢ DevStrArray which does not receive any data but which returns an array of strings

* DevStruct which also does not receive data but which returns one of the two Tango composed types (Dev Var-
DoubleStringArray)

For all these commands, the default behavior of the state machine (command always allowed) is acceptable. The
attributes are :

* A spectrum type attribute of the Tango string type called StrAttr

* A readable attribute of the Tango::DevLong type called LongRdAttr. This attribute is linked with the following
writable attribute

* A writable attribute also of the Tango::DevLong type called LongWrAttr.

Since release 9, a Tango device also supports pipe. This is an advanced feature reserved for some specific cases.
Therefore, there is no device pipe example in this Getting started chapter.

The commands and attributes code

For each command called DevXxxx, pogo generates in the device class a method named dev_xxx which will be
executed when the command is requested by a client. In this chapter, the name of the device class is DocDs

The DevSimple command

This method receives a Tango::DevFloat type and also returns a data of the Tango::DevFloat type which is simply the
double of the input value. The code for the method executed by this command is the following:

1 Tango: :DevFloat DocDs::dev_simple (Tango::DevFloat argin)

2 {

3 Tango: :DevFloat argout ;

4 DEBUG_STREAM << "DocDs::dev_simple(): entering... !" << endl;
5

6 // Add your own code to control device here

5

8 argout = argin x 2;

9 return argout;

10 }
This method is fairly simple. The received data is passed to the method as its argument. It is

doubled at line 8 and the method simply returns the result.

5.3. How to develop for Tango Controls 79

http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/pogo_doc/index.html

Tango Controls Documentation, Release 9.3.4

The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the
Tango::DevVarLongArray type. Each element of the array is doubled. The code for the method executed by the
command is the following :

1 Tango: :DevVarLongArray =*DocDs::dev_array (const Tango::DevVarLongArray,,
—*argin)

2 {

3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without,
—copying,

5 // See "TANGO Device Server Programmer's Manual"

6 // (chapter x.x)

7 // -
8 Tango::DevVarLongArray =*argout = new Tango::DevVarLongArray () ;
9

10 DEBUG_STREAM << "DocDs::dev_array(): entering... !" << endl;
11

12 // Add your own code to control device here

13

14 long argin_length = argin->length();

15 argout->length (argin_length);

16 for (int 1 = 0;1i < argin_length;i++)

17 (xargout) [1] = (xargin) [i] * 2;

18

19 return argout;
20 }

The argout data array is created at line 8. Its length is set at line 15 from the input argument length. The array is
populated at line 16,17 and returned. This method allocates memory for the argout array. This memory is freed by the
Tango core classes after the data have been sent to the caller (no delete is needed). It is also possible to return data
from a statically allocated array without copying. Look at chapter [Data exchange] for all the details.

The DevString command

This method receives a data of the Tango::DevString type and also returns a data of the Tango::DevString type. The
command simply displays the content of the input string and returns a hard-coded string. The code for the method
executed by the command is the following :

1 Tango: :DevString DocDs::dev_string(Tango: :DevString argin)

2 {

3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without,,
—copying,

5 // See "TANGO Device Server Programmer's Manual"

6 // (chapter x.x)

7 [/
8 Tango: :DevString argout;

9 DEBUG_STREAM << "DocDs::dev_string(): entering... !" << endl;
10
11 // Add your own code to control device here
12
13 cout << "the received string is " << argin << endl;

80 Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

14

15 string str("Am I a good Tango dancer ?");
16 argout = new char[str.size() + 1];

17 strcpy (argout, str.c_str());

18

19 return argout;

20 }

The argout string is created at line 8. Internally, this method is using a standard C++ string. Memory for the returned
data is allocated at line 16 and is initialized at line 17. This method allocates memory for the argout string. This
memory is freed by the Tango core classes after the data have been sent to the caller (no delete is needed). It is also
possible to return data from a statically allocated string without copying. Look at chapter [Data exchange] for all the
details.

The DevStrArray command

This method does not receive input data but returns an array of strings (Tango::DevVarStringArray type). The code
for the method executed by this command is the following:

1 Tango: :DevVarStringArray xDocDs::dev_str_array ()

2 {

3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without,
—copying,

5 // See "TANGO Device Server Programmer's Manual"

6 // (chapter x.x)

7 /) -
8 Tango: :DevVarStringArray *argout = new_

—Tango: :DevVarStringArray () ;

9

10 DEBUG_STREAM << "DocDs::dev_str_array(): entering... !" << endl;
11

12 // Add your own code to control device here

13

14 argout->length (3);

15 (xargout) [0] = Tango::string_dup ("Rumba") ;

16 (xargout) [1] = Tango::string_dup ("Waltz");

17 string str ("Jerck");

18 (#argout) [2] = Tango::string_dup(str.c_str());

19 return argout;
20 }

The argout data array is created at line 8. Its length is set at line 14. The array is populated at line 15,16 and 18.
The last array element is initialized from a standard C++ string created at line 17. Note the usage of the string_dup
function of the Tango namespace. This is necessary for strings array due to the CORBA memory allocation schema.

The DevStruct command

This method does not receive input data but returns a structure of the Tango::DevVarDoubleStringArray type. This
type is a composed type with an array of double and an array of strings. The code for the method executed by this
command is the following:

1 Tango: :DevVarDoubleStringArray =DocDs::dev_struct ()
2 {

5.3. How to develop for Tango Controls 81

Tango Controls Documentation, Release 9.3.4

3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without,
—copying,

5 // See "TANGO Device Server Programmer's Manual"

6 // (chapter x.x)

7 // -
8 Tango: :DevVarDoubleStringArray =xargout = new,_

—Tango: :DevVarDoubleStringArray () ;

9

10 DEBUG_STREAM << "DocDs::dev_struct(): entering... !" << endl;
11

12 // Add your own code to control device here

13

14 argout->dvalue.length (3);

15 argout->dvalue[0] = 0.0;

16 argout->dvalue[l] = 11.11;

17 argout->dvalue[2] = 22.22;

18

19 argout->svalue.length (2);
20 argout->svalue[0] = Tango::string_dup ("Be Bop");
21 string str("Smurf");
22 argout->svalue[l] = Tango::string dup(str.c_str());
23
24 return argout;
25 }

The argout data structure is created at line 8. The length of the double array in the output structure is set at line 14.
The array is populated between lines 15 and 17. The length of the string array in the output structure is set at line 19.
This string array is populated between lines 20 an 22 from a hard-coded string and from a standard C++ string. This
method allocates memory for the argout data. This memory is freed by the Tango core classes after the data have been
sent to the caller (no delete is needed). Note the usage of the string_dup function of the Tango namespace. This is
necessary for strings array due to the CORBA memory allocation schema.

The three attributes

Some data have been added to the definition of the device class in order to store attributes value. These data are (part
of the class definition) :

1 protected

2 // Add your own data members here

3 [
4 Tango: :DevString attr_str_arrayl[5];
5 Tango: :DevLong attr_rd;

6 Tango: :DevLong attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum with a maximum X dimension
of 5, an array of length 5 has been reserved.

Several methods are necessary to implement these attributes. One method to read the hardware which is common to all
readable attributes plus one read method for each readable attribute and one write method for each writable attribute.
The code for these methods is the following :

1 wvoid DocDs::read_attr_hardware (vector<long> &attr_list)
2

82 Chapter 5. Getting Started

Tango Controls Documentation, Release 9.3.4

3 DEBUG_STREAM << "DocDs::read_attr_hardware (vector<long> &attr_list)
—entering... "<< endl;

4 // Add your own code here

5

6 string att_name;

7 for (long i = 0;i < attr_list.size();i++)

8 {

9 att_name = dev_attr->get_attr_by_ind(attr_list[i]) .get_name();
10

11 if (att_name == "LongRdAttr")

12 {

13 attr_rd = 5;

14 }

15 }

16 1}

17

18 wvoid DocDs::read_LongRdAttr (Tango::Attribute &attr)

19 |
20 DEBUG_STREAM << "DocDs::read_LongRdAttr (Tango::Attribute &attr)
—entering... "<< endl;
21
22 attr.set_value (&attr_rd);
23 1}
24
25 wvoid DocDs::read_LongWrAttr (Tango::Attribute &attr)
26 {

27 DEBUG_STREAM << "DocDs::read_LongWrAttr (Tango::Attribute &attr),
—entering... "<< endl;

28

29 attr.set_value (&attr_wr);

30 1}

31

32 wvoid DocDs::write_LongWrAttr (Tango::WAttribute &attr)

33 {

34 DEBUG_STREAM << "DocDs::write_LongWrAttr (Tango::WAttribute &attr)
—entering... "<< endl;

35

36 attr.get_write_value(attr_wr);

37 DEBUG_STREAM << "Value to be written = " << attr_wr << endl;

38 1}

39

40 void DocDs::read_StrAttr (Tango::Attribute &attr)

41 {

42 DEBUG_STREAM << "DocDs::read_ StrAttr(Tango::Attribute &attr) entering.
.. "<< endl;

43

44 attr_str_array[0] = const_cast<char x> ("Rock");

45 attr_str_array[l] = const_cast<char x> ("Samba");

46

47 attr_set_value (attr_str_array, 2);

48 1}

The read_attr_hardware() method is executed once when a client execute the read_attributes CORBA request whatever
the number of attribute to be read is. The rule of this method is to read the hardware and to store the read values

5.3. How to develop for Tango Controls 83

Tango Controls Documentation, Release 9.3.4

somewhere in the device object. In our example, only the LongRdAttr attribute internal value is set by this method
at line 13. The method read_LongRdAttr() is executed by the read_attributes CORBA call when the LongRdAttr
attribute is read but after the read_attr_hardware() method has been executed. Its rule is to set the attribute value in
the TANGO core classes object representing the attribute. This is done at line 22. The method read_LongWrAttr()
will be executed when the LongWrAttr attribute is read (after the read_attr_hardware() method). The attribute value
is set at line 29. In the same manner, the method called read_StrAttr() will be executed when the attribute StrAttr
is read. Its value is initialized in this method at line 44 and 45. There are several ways to code spectrum or image
attribute of the DevString data type. A HowTo related to this topic is available on the Tango control system Web site.
The write_LongWrAttr() method is executed when the LongWrAttr attribute value is set by a client. The new attribute
value coming from the client is stored in the object data at line 36.

Pogo also generates a file called DocDsStateMachine.cpp (for a Tango device server class called DocDs). This file is
used to store methods coding the device state machine. By default a allways allowed state machine is provided. For
more information about coding the state machine, refer to the chapter Writing a device server.

5.3.3 Getting started with PyTango (Python implementation of Tango-Controls)

Intended audience: beginner developers, Programming language: python

Developing Python TANGO device class
5.4 Administration applications guide

Intended audience: beginners, administrators

Starting as Administrator for Tango Controls you should look on the following tools and topics:

5.4.1 Astor

Astor is a tool for management of Tango Controls system.

5.4.2 Jive

It is a tool used to configure components of the Tango Controls and browse a static Tango Database. See Jive Manual.

5.4.3 LogViewer

Tango provides a logging facility. You may use it with the LogViewer application delivered with Tango Controls.

5.4.4 Tango Database

Tango Admin is a command-line interface for Tango Database management.

5.4.5 Installation

Recipes on system installation are provided in a dedicated section.

Then, Administration section contains various related information.

84 Chapter 5. Getting Started

CHAPTER O

Developer’s Guide

Intended audience: developers, Programming language: all

In this section the process of how to write Tango device servers and clients (applications). In addtion to articles
listed below you may be interested in Tutorials and HOW-TOs for developers or browse all documents marked for
developers.

The section is organized as follows:

6.1 Overview

Intended audience: developers, Programming language: all

Tango is a developers toolkit. There are many libraries and tools for implemented device clients and servers.

6.1.1 C++ and Python

This clickable map shows the libraries and tools available for C++ and Python developers.

6.1.2 Java

This clickable map shows the libraries and tools available for Java developers.

6.2 General guidelines

Intended audience: developers, administrators, users, Programming language: all

85

Tango Controls Documentation, Release 9.3.4

6.2.1 Tango object naming (device, attribute and property)

Intended audience: developers, users, administrators, Programming language: all

Device name

A Tango device name is a three fields name. The field separator is the / character. The first field is named domain, the
second field is named family and the last field is named member.A tango device name looks like
domain/family/member

It is a hierarchical notation. The member specifies which element within a family. The family specifies which kind
of equipment within a domain. The domain groups devices related to which part of the accelerator/experiment they
belongs to. At ESRF, some of the machine control system domain name are SR for the storage ring, TL1 for the
transfer line 1 or SY for the synchrotron booster. For experiment, ID11 is the domain name for all devices belonging
to the experiment behind insertion device 11. Here are some examples of Tango device name used at the ESRF :

e sr/d-ct/1 : The current transformer. The domain part is sr for storage ring. The family part is d-ct for diagnos-
tic/current transformer and the member part is 1

* fe/v-pen/id11-1 : A Penning gauge. The domain part is fe for front-end. The family part is v-pen for vac-
uum/penning and the member name is id11-1 to specify that this is the first gauge on the front-end part after the
insertion device 11

Full object name

The device name as described above is not enough to cover all Tango usage like device server without database or
device access for multi control system. With the naming schema, we must also be able to name attribute and property.
Therefore, the full naming schema is

[protocol://[[host:port/[device_name[/attribute |[->property J[#dbase=xx]
The protocol, host, port, attribute, property and dbase fields are optional. The meaning of these fields are :
protocol: Specifies which protocol is used (Tango or Taco). Tango is the default

#dbase: The supported value for xx is yes and no. This field is used to specify that the device is a device served by a
device server started with or without database usage. The default value is dbase=yes

host:port: This field has different meaning according to the dbase value. If dbase=yes (the default), the host is the host
where the control system database server is running and port is the database server port. It has a higher priority than
the value defined by the TANGO_HOST environment variable. If dbase=no, host is the host name where the device
server process serving the device is running and port is the device server process port.

attribute: The attribute name
property: The property name

The host:port and dbase=xx fields are necessary only when creating the DeviceProxy object used to remotely access
the device. The -> characters are used to specify a property name.

Some examples
Full device name examples

* gizmo:20000/sr/d-ct/1 : Device sr/d-ct/1 running in a specified control system with the database server running
on a host called gizmo and using the port number 20000. The TANGO_HOST environment variable will not be

86 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

used.

* tango://freak:2345/id11/rv/1#dbase=no : Device served by a device server started without database. The
server is running on a host called freak and use port number 2345. //freak:2345/id11/rv/1#dbase=no is also
possible for the same device.

 Taco://sy/ps-ki/l : Taco device sy/ps-ki/l

Attribute name examples

* id11/mot/1/Position : Attribute position for device id11/mot/1

* sr/d-ct/1/Lifetime : Attribute lifetime for Tango device sr/d-ct/1

Attribute property name

 id11/rv/1/temp->label : Property label for attribute temp for device id11/rv/1.

* sr/d-ct/1/Lifetime->unit : The unit property for the Lifetime attribute of the sr/d-ct/1 device

Device property name

¢ sr/d-ct/1->address : the address property for device sr/d-ct/1

Class property name

 Starter->doc_url : The doc_url property for a class called Starter

Device and attribute name alias

Within Tango, each device or attribute can have an alias name defined in the database. Every time a device or an
attribute name is requested by the APT’s, it is possible to use the alias. The alias is simply an open string stored in
the database. The rule of the alias is to give device or attribute name a name more natural from the physicist point
of view. Let’s imagine that for experiment, the sample position is described by angles called teta and psi in physics
book. It is more natural for physicist when they move the motor related to sample position to use fefa and psi rather
device name like idxx/mot/I or idxx/mot/2. An attribute alias is a synonym for the four fields used to name an attribute.
For instance, the attribute Current of a power-supply device called s#/ps/dipole could have an alias DipoleCurrent.
This alias can be used when creating an instance of a AttributeProxy class instead of the full attribute name which is
st/ps/dipole/Current. Device alias name are uniq within a Tango control system. Attribute alias name are also uniq
within a Tango control system.

Reserved words and characters, limitations
From the naming schema described above, the reserved characters are :, #, / and the reserved string is : ->. On top of
that, the dbt_update tool (tool to fulfill database from the content of a file) reserved the device word

The device name, its domain, member and family fields and its alias are stored in the Tango database. The default
maximum size for these items are :

6.2. General guidelines 87

Tango Controls Documentation, Release 9.3.4

Item max length
device name 255

domain field 85

family field 85

member field 85

device alias name | 255

The device name, the command name, the attribute name, the property name, the device alias name and the device
server name are case insensitive.

6.3 10 things you should know about CORBA

Intended audience: developers, Programming language: all

1.
2.

You don’t need to know CORBA to work with TANGO

CORBA is the acronym for Common Object Request Broker Architecture and it is a standard defined by the
Object Management Group (OMG)

CORBA enables communication between software written in different languages and running on different com-
puters

CORBA applications are composed of many objects; objects are running software that provides functionalities
and that can represent something in the real world

Every object has a type which is defined with a language called IDL (Interface Definition Language)

An object has an interface and an implementation: this is the essence of CORBA because it allows interoper-
ability.

CORBA allows an application to request an operation to be performed by a distributed object and for the results
of the operation to be returned back to the application making the request.

CORBA is based on a Remote Procedure Call model
The TANGO Device is a CORBA Object
The TANGO Device Server is a CORBA Application

6.4 Tango Client

Intended audience: developers, Programming language: all

88

Chapter 6. Developer’s Guide

http://www.omg.org

Tango Controls Documentation, Release 9.3.4

6.4.1 Writing a TANGO client using TANGO C++ APIs

Intended audience: developers, Programming language: c++

Introduction

TANGO devices and database are implemented using the TANGO device server model. To access them the user has
the CORBA interface e.g. command_inout(), write_attributes() etc. defined by the idl file. These methods are very
low-level and assume a good working knowledge of CORBA. In order to simplify this access, high-level api has been
implemented which hides all CORBA aspects of TANGO. In addition the api hides details like how to connect to a
device via the database, how to reconnect after a device has been restarted, how to correctly pack and unpack attributes
and so on by implementing these in a manner transparent to the user. The api provides a unified error handling for all
TANGO and CORBA errors. Unlike the CORBA C++ bindings the TANGO api supports native C++ data types e.g.
strings and vectors.

This chapter describes how to use these API’s. It is not a reference guide. Reference documentation is available as
Web pages in the TANGO home page

Getting Started

Refer to the chapter Getting Started for an example on getting start with the C++ or Java api.

Basic Philosophy

The basic philosophy is to have high level classes to deal with Tango devices. To communicate with Tango device,
uses the DeviceProxy class. To send/receive data to/from Tango device, uses the DeviceData, DeviceAttribute or
DevicePipe classes. To communicate with a group of devices, use the Group class. If you are interested only in some
attributes provided by a Tango device, uses the AttributeProxy class. Even if the Tango database is implemented as
any other devices (and therefore accessible with one instance of a DeviceProxy class), specific high level classes have
been developped to query it. Uses the Database, DbDevice, DbClass, DbServer or DbData classes when interfacing
the Tango database. Callback for asynchronous requests or events are implemented via a CallBack class. An utility
class called ApiUtil is also available.

Data types

The definition of the basic data type you can transfert using Tango is:

6.4. Tango Client 89

http://www.tango-controls.org

Tango Controls Documentation, Release 9.3.4

Tango type | C++ equivalent type

name

DevBoolean boolean

DevShort short

DevEnum enumeration (only for attribute / See chapter on advanced features)

DevLong int (always 32 bits data)

DevLong64 long long on 32 bits chip or 1ong on 64 bits chip (always 64 bits data)

DevFloat float

DevDouble double

DevString char \«

DevEncoded structure with 2 fields: a string and an array of unsigned char

DevUChar unsigned char

DevUShort unsigned short

DevULong unsigned int (always 32 bits data)

DevULong64 unsigned long long on 32 bits chip or unsigned long on 64 bits chip (always 64
bits data)

DevState Tango specific data type

Using commands, you are able to transfert all these data types, array of these basic types and two other Tango specific
data types called DevVarLongStringArray and DevVarDoubleStringArray. See chapter [Data exchange] to get details
about them. You are also able to create attributes using any of these basic data types to transfer data between clients
and servers.

Request model

For the most important API remote calls (command_inout, read_attribute(s) and write_attribute(s)), Tango supports
two kind of requests which are the synchronous model and the asynchronous model. Synchronous model means that
the client wait (and is blocked) for the server to send an answer. Asynchronous model means that the client does not
wait for the server to send an answer. The client sends the request and immediately returns allowing the CPU to do
anything else (like updating a graphical user interface). Device pipe supports only the synchronous model. Within
Tango, there are two ways to retrieve the server answer when using asynchronous model. They are:

1. The polling mode
2. The callback mode

In polling mode, the client executes a specific call to check if the answer is arrived. If this is not the case, an exception
is thrown. If the reply is there, it is returned to the caller and if the reply was an exception, it is re-thrown. There are
two calls to check if the reply is arrived:

¢ Call which does not wait before the server answer is returned to the caller.

 Call which wait with timeout before returning the server answer to the caller (or throw the exception) if the
answer is not arrived.

In callback model, the caller must supply a callback method which will be executed when the command returns. They
are two sub-modes:

1. The pull callback mode
2. The push callback mode

In the pull callback mode, the callback is triggered if the server answer is arrived when the client decide it by calling a
synchronization method (The client pull-out the answer). In push mode, the callback is executed as soon as the reply
arrives in a separate thread (The server pushes the answer to the client).

920 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Synchronous model

Synchronous access to Tango device are provided using the DeviceProxy or AttributeProxy class. For the DeviceProxy
class, the main synchronous call methods are :

* command_inout() to execute a Tango device command

* read_attribute() or read_attributes() to read a Tango device attribute(s)

* write_attribute() or write_attributes() to write a Tango device attribute(s)

* write_read_attribute() or write_read_attributes() to write then read Tango device attribute(s)
* read_pipe() to read a Tango device pipe

* write_pipe() to write a Tango device pipe

* write_read_pipe() to write then read Tango device pipe

For commands, data are send/received to/from device using the DeviceData class. For attributes, data are send/received
to/from device attribute using the DeviceAttribute class. For pipes, data are send/receive to/from device pipe using the
DevicePipe and DevicePipeBlob classes.

In some cases, only attributes provided by a Tango device are interesting for the application. You can use the At-
tributeProxy class. Its main synchronous methods are :

e read() to read the attribute value
* write() to write the attribute value
e write_read() to write then read the attribute value

Data are transmitted using the DeviceAttribute class.

Asynchronous model

Asynchronous access to Tango device are provided using DeviceProxy or AttributeProxy, CallBack and ApiUtil classes
methods. The main asynchronous call methods and used classes are :

* To execute a command on a device
— DeviceProxy::command_inout_asynch() and DeviceProxy::command_inout_reply() in polling model.

— DeviceProxy::command_inout_asynch(), DeviceProxy::get_asynch_replies() and CallBack class in call-
back pull model

— DeviceProxy::command_inout_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class in call-
back push model

* To read a device attribute
— DeviceProxy::read_attribute_asynch() and DeviceProxy::read_attribute_reply() in polling model

— DeviceProxy: :read_attribute_asynch(), DeviceProxy::get_asynch_replies() and CallBack class in callback
pull model.

— DeviceProxy::read_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class in call-
back push model

¢ To write a device attribute
— DeviceProxy: :write_attribute_asynch() in polling model

— DeviceProxy::write_attribute_asynch() and CallBack class in callback pull model

6.4. Tango Client 91

Tango Controls Documentation, Release 9.3.4

— DeviceProxy::write_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class in call-
back push model

For commands, data are send/received to/from device using the DeviceData class. For attributes, data are send/received
to/from device attribute using the DeviceAttribute class. It is also possible to generate asynchronous request(s) using
the ArtributeProxy class following the same schema than above. Methods to use are :

* read_asynch() and read_reply() to asynchronously read the attribute value

* write_asynch() and write_reply() to asynchronously write the attribute value

Events

Introduction

Events are a critical part of any distributed control system. Their aim is to provide a communication mechanism which
is fast and efficient.

The standard CORBA communication paradigm is a synchronous or asynchronous two-way call. In this paradigm the
call is initiated by the client who contacts the server. The server handles the client’s request and sends the answer to
the client or throws an exception which the client catches. This paradigm involves two calls to receive a single answer
and requires the client to be active in initiating the request. If the client has a permanent interest in a value he is obliged
to poll the server for an update in a value every time. This is not efficient in terms of network bandwidth nor in terms
of client programming.

For clients who are permanently interested in values the event-driven communication paradigm is a more efficient and
natural way of programming. In this paradigm the client registers her interest once in an event (value). After that the
server informs the client every time the event has occurred. This paradigm avoids the client polling, frees it for doing
other things, is fast and makes efficient use of the network.

The rest of this chapter explains how the TANGO events are implemented and the application programmer’s interface.

Event definition

TANGO events represent an alternative channel for reading TANGO device attributes. Device attributes values are
sent to all subscribed clients when an event occurs. Events can be an attribute value change, a change in the data
quality or a periodically send event. The clients continue receiving events as long as they stay subscribed. Most of
the time, the device server polling thread detects the event and then pushes the device attribute value to all clients.
Nevertheless, in some cases, the delay introduced by the polling thread in the event propagation is detrimental. For
such cases, some API calls directly push the event. Until TANGO release 8, the omniNotify implementation of the
CORBA Notification service was used to dispatch events. Starting with TANGO 8, this CORBA Notification service
has been replaced by the ZMQ library which implements a Publish/Subscribe communication model well adapted to
TANGO events communication.

Event types

The following eight event types have been implemented in TANGO :

1. change - an event is triggered and the attribute value is sent when the attribute value changes significantly. The
exact meaning of significant is device attribute dependent. For analog and digital values this is a delta fixed per
attribute, for string values this is any non-zero change i.e. if the new attribute value is not equal to the previous
attribute value. The delta can either be specified as a relative or absolute change. The delta is the same for
all clients unless a filter is specified (see below). To easily write applications using the change event, it is also
triggered in the following case :

92 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

1. When a spectrum or image attribute size changes.
. At event subscription time
. When the polling thread receives an exception during attribute reading

. When the polling thread detects that the attribute quality factor has changed.

whm A~ W N

. The first good reading of the attribute after the polling thread has received exception when trying to read
the attribute

6. The first time the polling thread detects that the attribute quality factor has changed from INVALID to
something else

7. When a change event is pushed manually from the device server code. (Devi-
celmpl::push_change_event()).

8. By the methods Attribute::set_quality() and Attribute::set_value_date_quality() if a client has subscribed
to the change event on the attribute. This has been implemented for cases where the delay introduced by
the polling thread in the event propagation is not authorized.

2. periodic - an event is sent at a fixed periodic interval. The frequency of this event is determined by the
event_period property of the attribute and the polling frequency. The polling frequency determines the highest
frequency at which the attribute is read. The event_period determines the highest frequency at which the peri-
odic event is sent. Note if the event_period is not an integral number of the polling period there will be a beating
of the two frequencies'. Clients can reduce the frequency at which they receive periodic events by specifying a
filter on the periodic event counter.

3. archive - an event is sent if one of the archiving conditions is satisfied. Archiving conditions are defined via
properties in the database. These can be a mixture of delta_change and periodic. Archive events can be send from
the polling thread or can be manually pushed from the device server code (Devicelmpl::push_archive_event()).

4. attribute configuration - an event is sent if the attribute configuration is changed.

5. data ready - This event is sent when coded by the device server programmer who uses a specific method of one
of the Tango device server class to fire the event (Devicelmpl::push_data_ready_event()). The rule of this event
is to inform a client that it is now possible to read an attribute. This could be useful in case of attribute with
many data.

6. user - The criteria and configuration of these user events are managed by the device server programmer who
uses a specific method of one of the Tango device server class to fire the event (Devicelmpl::push_event()).

7. device interface change - This event is sent when the device interface changes. Using Tango, it is possible
to dynamically add/remove attribute/command to a device. This event is the way to inform client(s) that at-
tribute/command has been added/removed from a device. Note that this type of event is attached to a device and
not to one attribute (like all other event types). This event is triggered in the following case :

1. A dynamic attribute or command is added or removed. The event is sent after a small delay (50 mS) in
order to eliminate the risk of events storm in case several attributes/commands are added/removed in a
loop

2. At the end of admin device RestartServer or DevRestart command

3. After a re-connection due to a device server restart. Because the device interface is not memorized, the
event is sent even if it is highly possible that the device interface has not changed. A flag in the data
propagated with the event inform listening applications that the device interface change is not guaranteed.

4. At event re-connection time. This case is similar to the previous one (device interface change not guaran-
teed)

! note: the polling is not synchronized is currently not synchronized on the hour

6.4. Tango Client 93

Tango Controls Documentation, Release 9.3.4

8. pipe - This is the kind of event which has to be used when the user want to push data through a pipe. This kind
of event is only sent by the user code by using a specific method (Devicelmpl::push_pipe_event()). There is no
way to ask the Tango kernel to automatically push this kind of event.

The first three above events are automatically generated by the TANGO library or fired by the user code. Events
number 4 and 7 are only automatically sent by the library and events 5, 6 and 8 are fired only by the user code.

Event filtering (Removed in Tango release 8 and above)

Please, note that this feature is available only for Tango releases older than Tango 8. The CORBA Notification Service
allows event filtering. This means that a client can ask the Notification Service to send the event only if some filter is
evaluated to true. Within the Tango control system, some pre-defined fields can be used as filter. These fields depend
on the event type.

Event type Filterable field name Filterable field value type
change delta_change_rel Relative change (in %) | double
since last even
delta_change_abs Absolute change since last | double
event
quality Is set to 1 when the at- | double

tribute quality factor has
changed, otherwise it is 0
forced_event Is set to 1 when the event | double
was fired on exception or a
quality factor set to invalid

periodic counter Incremented each time the | long
event is sent
archive delta_change_rel Relative change (in %) | double
since last event
delta_change_abs Absolute change since last | double
event
quality doubl

Is set to 1 when the attribute quafity
factor has changed,
otherwise it is 0

counter Incremented each time the | long
event is sent for periodic
reason. Set to -1 if event
sent for change reason

forced_event Is set to 1 when the event | double
was fired on exception or a
quality factor set to invalid
delta_event Number of milli-seconds | double
since previous event

Filter are defined as a string following a grammar defined by CORBA. It is defined in [NotificationService]. The
following example shows you the most common use of these filters in the Tango world :

* To receive periodic event one out of every three, the filter must be
$counter % 3 ==0

* To receive change event only if the relative change is greater than % (positive and negative), the filter must be

94 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

$delta_change_rel >= 20 or $delta_change_rel <= -20
» To receive a change event only on quality change, the filter must be
$quality == 1

For user events, the filter field name(s) and their value are defined by the device server programmer.

Application Programmer’s Interface

How to setup and use the TANGO events ? The interfaces described here are intended as user friendly interfaces to
the underlying CORBA calls. The interface is modeled after the asynchronous command_inout() interface so as to
maintain coherency. The event system supports push callback model as well as the pull callback model.

The two event reception modes are:
* Push callback model : On event reception a callbacks method gets immediately executed.

* Pull callback model : The event will be buffered the client until the client is ready to receive the event data.
The client triggers the execution of the callback method.

The event reception buffer in the pull callback model, is implemented as a round robin buffer. The client can choose
the size when subscribing for the event. This way the client can set-up different ways to receive events.

» Event reception buffer size = 1 : The client is interested only in the value of the last event received. All other
events that have been received since the last reading are discarded.

» Event reception buffer size > 1 : The client has chosen to keep an event history of a given size. When more
events arrive since the last reading, older events will be discarded.

 Event reception buffer size = ALL_EVENTS : The client buffers all received events. The buffer size is unlimited
and only restricted by the available memory for the client.

Configuring events

The attribute configuration set is used to configure under what conditions events are generated. A set of standard
attribute properties (part of the standard attribute configuration) are read from the database at device startup time and
used to configure the event engine. If there are no properties defined then default values specified in the code are used.

change

The attribute properties and their default values for the change event are :

1. rel_change - a property of maximum 2 values. It specifies the positive and negative relative change of the
attribute value w.r.t. the value of the previous change event which will trigger the event. If the attribute is a
spectrum or an image then a change event is generated if any one of the attribute value’s satisfies the above
criterium. If only one property is specified then it is used for the positive and negative change. If no property is
specified, no events are generated.

2. abs_change - a property of maximum 2 values.It specifies the positive and negative absolute change of the
attribute value w.r.t the value of the previous change event which will trigger the event. If the attribute is a
spectrum or an image then a change event is generated if any one of the attribute value’s satisfies the above
criterium. If only one property is specified then it is used for the positive and negative change. If no properties
are specified then the relative change is used.

6.4. Tango Client 95

Tango Controls Documentation, Release 9.3.4

periodic

The attribute properties and their default values for the periodic event are :

1. event_period - the minimum time between events (in milliseconds). If no property is specified then a default
value of 1 second is used.

archive

The attribute properties and their default values for the archive event are :

1. archive_rel_change - a property of maximum 2 values which specifies the positive and negative relative change
w.r.t. the previous attribute value which will trigger the event. If the attribute is a spectrum or an image then an
archive event is generated if any one of the attribute value’s satisfies the above criterium. If only one property
is specified then it is used for the positive and negative change. If no properties are specified then no events are
generate.

2. archive_abs_change - a property of maximum 2 values which specifies the positive and negative absolute
change w.r.t the previous attribute value which will trigger the event. If the attribute is a spectrum or an image
then an archive event is generated if any one of the attribute value’s satisfies the above criterium. If only one
property is specified then it is used for the positive and negative change. If no properties are specified then the
relative change is used.

3. archive_period - the minimum time between archive events (in milliseconds). If no property is specified, no
periodic archiving events are send.

C++ Clients

This is the interface for clients who want to receive events. The main action of the client is to subscribe and unsubscribe
to events. Once the client has subscribed to one or more events the events are received in a separate thread by the client.

Two reception modes are possible:
* On event reception a callbacks method gets immediately executed.
* The event will be buffered until the client until the client is ready to receive the event data.

The mode to be used has to be chosen when subscribing for the event.

Subscribing to events

The client call to subscribe to an event is named DeviceProxy::subscribe_event() . During the event subscription the
client has to choose the event reception mode to use.

Push model:

int DeviceProxy::subscribe_event (
const string &attribute,
Tango: :EventType event,
Tango::CallBack =xcallback,
bool stateless = false);

The client implements a callback method which is triggered when the event is received. Note that this callback method
will be executed by a thread started by the underlying ORB. This thread is not the application main thread. For Tango
releases before 8, a similar call with one extra parameter for event filtering is also available.

96 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Pull model:

int DeviceProxy::subscribe_event (
const string &attribute,
Tango: :EventType event,
int event_queue_size,
bool stateless = false);

The client chooses the size of the round robin event reception buffer. Arriving events will be buffered until the client
uses DeviceProxy::get_events() to extract the event data. For Tango releases before 8, a similar call with one extra
parameter for event filtering is also available.

On top of the user filter defined by the filters parameter, basic filtering is done based on the reason specified and the
event type. For example when reading the state and the reason specified is change the event will be fired only when
the state changes. Events consist of an attribute name and the event reason. A standard set of reasons are implemented
by the system, additional device specific reasons can be implemented by device servers programmers.

The stateless flag = false indicates that the event subscription will only succeed when the given attribute is known and
available in the Tango system. Setting stateless = true will make the subscription succeed, even if an attribute of this
name was never known. The real event subscription will happen when the given attribute will be available in the Tango
system.

Note that in this model, the callback method will be executed by the thread doing the DeviceProxy::get_events() call.

The CallBack class

In C++, the client has to implement a class inheriting from the Tango CallBack class and pass this to the Device-
Proxy::subscribe_event() method. The CallBack class is the same class as the one proposed for the TANGO asyn-
chronous call. This is as follows for events :

class MyCallback : public Tango::CallBack
{

public:

void push_event (Tango: :EventData «);

void push_event (Tango: :AttrConfEventData «);
void push_event (Tango: :DataReadyEventData x);
void push_event (Tango: :DevIntrChangeEventData «);
void push_event (Tango: :PipeEventData *);

where EventData is defined as follows :

class EventData
{

DeviceProxy ~device;
string attr_name;
string event;
DeviceAttribute attr_value;
bool err;
DevErrorList errors;

AttrConfEventData is defined as follows :

6.4. Tango Client 97

Tango Controls Documentation, Release 9.3.4

class AttrConfEventData
{

DeviceProxy ~device;
string attr_name;
string event;
AttributeInfoEx *attr_conf;
bool err;
DevErrorList errors;

DataReadyEventData is defined as follows :

class DataReadyEventData
{

DeviceProxy ~device;

string attr_name;
string event;

int attr_data_type;
int ctr;

bool err;
DevErrorList errors;

DevIntrChangeEventData is defined as follows :

class DevIntrChangeEventData

{

DeviceProxy device;
string event;
string device_name;
CommandInfolList cmd_list;
AttributeInfolListEx att_list;
bool dev_started;
bool err;
DevErrorList errors;

and PipeEventData is defined as follows :

class PipeEventData

{

DeviceProxy ~device;
string pipe_name;
string event;
DevicePipe *pipe_value;
bool err;
DevErrorList errors;

In push model, there are some cases (same callback used for events coming from different devices hosted in device
server process running on different hosts) where the callback method could be executed concurently by different
threads started by the ORB. The user has to code his callback method in a thread safe manner.

98 Chapter 6. Developer’s Guide

1

Tango Controls Documentation, Release 9.3.4

Unsubscribing from an event

Unsubscribe a client from receiving the event specified by event_id is done by calling the Device-
Proxy::unsubscribe_event() method :

void DeviceProxy::unsubscribe_event (int event_id);

Extract buffered event data

When the pull model was chosen during the event subscription, the received event data can be extracted with Device-
Proxy::get_events(). Two possibilities are available for data extraction. Either a callback method can be executed for
every event in the buffer when using

int DeviceProxy::get_events (
int event_id,
CallBack =cb);

Or all the event data can be directly extracted as EventDataList, AttrConfEventDataList , DataReadyEventDataL.ist,
DevIntrChangeEventDataList or PipeEventDataList when using

int DeviceProxy::get_events (
int event_id,
EventDatalist &event_list);

int DeviceProxy::get_events (
int event_id,
AttrConfEventDatalist &event_list);

int DeviceProxy::get_events (
int event_id,
DataReadyEventDatalList &event_list);

int DeviceProxy::get_events (
int event_id,
DevIntrChangeEventDatalist &event_list);

int DeviceProxy::get_events (
int event_id,
PipeEventDatalist &event_list);

The event data lists are vectors of EventData, AttrConfEventData, DataReadyEventData or PipeEventData pointers
with special destructor and clean-up methods to ease the memory handling.

class EventDatalist:public vector<EventData =*>

class AttrConfEventDatalList:public vector<AttrConfEventData *>

class DataReadyEventDataList:public vector<DataReadyEventData *>

class DevIntrChangeEventDataList:public vector<DevIntrChangeEventData =*>
class PipeEventDatalList:public vector<PipeEventData »*>

Example

Here is a typical code example of a client to register and receive events. First, you have to define a callback method as
follows:

6.4. Tango Client 99

20

21

22

23

24

25

26

27

28

29

Tango Controls Documentation, Release 9.3.4

class DoubleEventCallBack : public Tango::CallBack
{

void push_event (Tango: :EventDatax) ;
bi

void DoubleEventCallBack: :push_event (Tango: :EventData smyevent)
{
Tango: :DevVarDoubleArray xdouble_value;
try
{
cout << "DoubleEventCallBack::push_event(): called attribute "
<< myevent->attr_name
<< " event "
<< myevent->event
<< " (err="
<< myevent->err
<< ")" << endl;

if (!myevent->err)
{
* (myevent->attr_value) >> double_value;
cout << "double value "
<< (*double_value) [0]
<< endl;
delete double_value;

}
catch (...)

{

cout << "DoubleEventCallBack::push_event (): could not extract data !\n";

Then the main code must subscribe to the event and choose the push or the pull model for event reception.

Push model:

DoubleEventCallBack xdouble_callback = new DoubleEventCallBack;
Tango: :DeviceProxy smydevice = new Tango::DeviceProxy ("my/device/1");

int event_id;

const string attr_name ("current");

event_id = mydevice->subscribe_event (attr_name,
Tango: : CHANGE_EVENT,
double_callback);

cout << "event_client () id = " << event_id << endl;

// The callback methods are executed by the Tango event reception thread.
// The main thread is not concerned of event reception.

// Whatch out with synchronisation and data access in a multi threaded environment!

sleep(1000); // wait for events

mydevice->unsubscribe_event (event_id);

100 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Pull model:

DoubleEventCallBack *double_callback = new DoubleEventCallBack;
int event_queue_size = 100; // keep the last 100 events

Tango: :DeviceProxy smydevice = new Tango::DeviceProxy ("my/device/1");

int event_id;

const string attr_name ("current");

event_id = mydevice->subscribe_event (attr_name,
Tango: : CHANGE_EVENT,
event_queue_size);

cout << "event_client () id = " << event_id << endl;

// Check every 3 seconds whether new events have arrived and trigger the callback,,
—method
// for the new events.

for (int i=0; i < 100; i++)
{
sleep (3);

// Read the stored event data from the queue and call the callback method for_

—every event.
mydevice->get_events (event_id, double_callback);

event_test->unsubscribe_event (event_id) ;

Group

A Tango Group provides the user with a single point of control for a collection of devices. By analogy, one could see
a Tango Group as a proxy for a collection of devices. For instance, the Tango Group API supplies a command_inout()
method to execute the same command on all the elements of a group.

A Tango Group is also a hierarchical object. In other words, it is possible to build a group of both groups and individual
devices. This feature allows creating logical views of the control system - each view representing a hierarchical family
of devices or a sub-system.

In this chapter, we will use the term hierarchy to refer to a group and its sub-groups. The term Group designates to the
local set of devices attached to a specific Group.

Getting started with Tango group

The quickest way of getting started is to study an example. ..

Imagine we are vacuum engineers who need to monitor and control hundreds of gauges distributed over the 16 cells
of a large-scale instrument. Each cell contains several penning and pirani gauges. It also contains one strange gauge.
Our main requirement is to be able to control the whole set of gauges, a family of gauges located into a particular cell
(e.g. all the penning gauges of the 6th cell) or a single gauge (e.g. the strange gauge of the 7th cell). Using a Tango
Group, such features are quite straightforward to obtain.

Reading the description of the problem, the device hierarchy becomes obvious. Our gauges group will have the
following structure:

6.4. Tango Client 101

20

21

22

23

20

21

22

23

24

25

26

27

28

29

30

31

Tango Controls Documentation, Release 9.3.4

-> gauges
-> cell-01

|-> inst-c0l/vac-gauge/strange

| -> penning

| |-> inst-c0l/vac—-gauge/penning-01

\ |-> inst-c01l/vac—-gauge/penning-02

\ |-

| | -> inst-c0l/vac—-gauge/penning—xx

|-> pirani
| -> inst-c0l/vac-gauge/pirani-01
| —>

-> cell-02
|-> inst-c02/vac—-gauge/strange
| -> penning
|-> inst-c02/vac-gauge/penning-01
\ | =>
\
|-=> pirani
\ | =>
-> cell-03
| —>

|
|
|
|
|
|
|
|
|
|
| | -> inst-c0l/vac-gauge/pirani-xx
|
|
|
|
|
|
|
|
|
|
|

In the C++, such a hierarchy can be build as follows (basic version):

//— step0: create the root group
Tango: :Group *gauges = new Tango::Group ("gauges");

//— stepl: create a group for the n-th cell
Tango: :Group *cell = new Tango::Group("cell-01");

//— step2: make the cell a sub—-group of the root group
gauges—>add(cell);

//— step3: create a "penning" group
Tango: :Group *gauge_family = new Tango::Group ("penning") ;

//— stepd4: add all penning gauges located into the cell (note the wildcard)
gauge_family->add ("inst-c0l/vac-gauge/penning");

//— step5: add the penning gauges to the cell
cell->add (gauge_family);

//- stepé6: create a "pirani" group
gauge_family = new Tango::Group ("pirani");

//— step7: add all pirani gauges located into the cell (note the wildcard)
gauge_family->add ("inst-c0l/vac-gauge/pirani«");

(continues on next page)

102 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

//— step8: add the pirani gauges to the cell
cell->add (gauge_family);

//— step9: add the "strange" gauge to the cell
cell->add("inst-c01l/vac—-gauge/strange");

//~ repeat step 1 to 9 for the remaining cells
cell = new Tango::Group("cell-02");

Important note: There is no particular order to create the hierarchy. However, the insertion order of the devices is
conserved throughout the lifecycle of the Group and cannot be changed. That way, the Group implementation can
guarantee the order in which results are returned (see below).

Keeping a reference to the root group is enough to manage the whole hierarchy (i.e. there no need to keep trace of
the sub-groups or individual devices). The Group interface provides methods to retrieve a sub-group or an individual
device.

Be aware that a C++ group allways gets the ownership of its children and deletes them when it is itself deleted.
Therefore, never try to delete a Group (respectively a DeviceProxy) returned by a call to Tango::Group::get_group()
(respectively to Tango::Group::get_device()). Use the Tango::Group::remove() method instead (see the Tango Group
class API documentation for details).

We can now perform any action on any element of our gauges group. For instance, let’s ping the whole hierarchy to
be sure that all devices are alive.

//— ping the whole hierarchy
if (gauges—->ping() == true)
{
std::cout << "all devices alive" << std::endl;
}
else

{

std::cout << "at least one dead/busy/locked/... device" << std::endl;

Enabling and disabling group members

Devices belonging to a group can be temporarily excluded from all operations performed on the group using the
Group::disable and Group::enable calls.

Device name passed to the disable (enable) methods can contain wildcards (x). Note that only the first matching
device will be disabled (enabled). The search algorithm is breadth-first search. All group elements are searched (in
the insertion order) for a match before descending recursively to sub-groups. Recursive search can be disabled with
the forward flag (see a section dedicated to the forwarding).

During group operations like attribute read or command calls, entries for disabled elements will be included in the
result set, however they will not have any value and will be marked as disabled (GroupReply::group_element_enabled
will be false).

Note that if exceptions are enabled, any attempt to access the result (e.g. via get_data()) from a disabled device will
raise Tango: : DevFailed. Otherwise an empty value will be returned.

Below is an example using the gauges group:

6.4. Tango Client 103

20

21

22

23

24

25

26

Tango Controls Documentation, Release 9.3.4

// will disable: inst-c0l1/vac—-gauge/penning-01
gauges—->disable ("inst-c01l/%/penn");

// will disable nothing
const bool forwarded = true;
gauges—>disable ("inst-c0l/vac—-gauge/pirani-01", not forwarded);

// will disable: inst-c0l/vac-gauge/pirani-01
gauge_family->disable ("inst-c0l/vac-gauge/pirani-01");

// will enable: inst-c0l/vac-gauge/penning-01
gauges—>enable ("inst-c01/+");

auto states = gauges->command_inout ("State");
for (autos& state : states)
{
if (state.group_element_enabled())
{
// it's safe to access the value
std::cout << state.dev_name() << ": " << state.get_data() << "\n";
}
else

{

std::cout << state.dev_name() << ": is disabled\n";

Forward or not forward?

Since a Tango Group is a hierarchical object, any action performed on a group can be forwarded to its sub-groups.
Most of the methods in the Group interface have a so-called forward option controlling this propagation. When set
to false, the action is only performed on the local set of devices. Otherwise, the action is also forwarded to the sub-
groups, in other words, propagated along the hierarchy. In C++ , the forward option defaults to true (thanks to the C++
default argument value). There is no such mechanism in Java and the forward option must be systematically specified.

Executing a command

As a proxy for a collection of devices, the Tango Group provides an interface similar to the DeviceProxy’s. For the
execution of a command, the Group interface contains several implementations of the command_inout method. Both
synchronous and asynchronous forms are supported.

Obtaining command results

Command results are returned using a Tango::GroupCmdReplyList. This is nothing but a vector containing a
Tango::GroupCmdReply for each device in the group. The Tango::GroupCmdReply contains the actual data (i.e.
the Tango::DeviceData). By inheritance, it may also contain any error occurred during the execution of the command
(in which case the data is invalid).

We previously indicated that the Tango Group implementation guarantees that the command results are returned in the
order in which its elements were attached to the group. For instance, if gl is a group containing three devices attached
in the following order:

104 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

gl->add ("my/device/01");
gl->add ("my/device/03");
gl->add ("my/device/02");

the results of

Tango: :GroupCmdReplyList crl = gl->command_inout ("Status");

will be organized as follows:

crl{0] contains the status of my/device/01
crl[1] contains the status of my/device/03
crl[2] contains the status of my/device/02

Things get more complicated if sub-groups are added between devices.

g2->add ("my/device/04");
g2->add ("my/device/05");

gd->add ("my/device/08") ;
gd->add ("my/device/09");

g3->add ("my/device/06");
g3->add(g4);
g3->add ("my/device/07");

gl->add ("my/device/01");
gl->add(g2);
gl->add("my/device/03");
gl->add(g3);
gl->add ("my/device/02");

The result order in the Tango::GroupCmdReplyList depends on the value of the forward option. If set to true, the
results will be organized as follows:

Tango: :GroupCmdReplyList crl = gl->command_inout ("Status", true);

crl[0] contains the status of my/device/01 which belongs to gl
crl[1] contains the status of my/device/04 which belongs to gl.g2
crl[2] contains the status of my/device/05 which belongs to gl.g2
crl[3] contains the status of my/device/03 which belongs to gl
crl[4] contains the status of my/device/06 which belongs to gl.g3
crl[5] contains the status of my/device/08 which belongs to gl.g3.g4
crl[6] contains the status of my/device/09 which belongs to gl.23.g
crl[7] contains the status of my/device/07 which belongs to gl.g3
crl[8] contains the status of my/device/02 which belongs to gl

6.4. Tango Client 105

1

L Y N

Tango Controls Documentation, Release 9.3.4

If the forward option is set to false, the results are:

Tango: :GroupCmdReplyList crl = gl->command_inout ("Status", false);

crl[0] contains the status of my/device/01 which belongs to g
crl[1] contains the status of my/device/03 which belongs to gl
crl[2] contains the status of my/device/02 which belongs to gl

The Tango::GroupCmdReply contains some public members allowing the identification of both the device
(Tango::GroupCmdReply::dev_name) and the command (Tango::GroupCmdReply::obj_name). It means that, de-
pending of your application, you can associate a response with its source using its position in the response list or
using the Tango::GroupCmdReply::dev_name member.

Case 1: a command, no argument

As an example, we execute the Status command on the whole hierarchy synchronously.

Tango: :GroupCmdReplyList crl = gauges->command_inout ("Status");

As afirst step in the results processing, it could be interesting to check value returned by the has_failed() method of the
GroupCmdReplyList. If it is set to true, it means that at least one error occurred during the execution of the command
(i.e. at least one device gave error).

if (crl.has_failed())
{
cout << "at least one error occurred" << endl;

}

else

{

cout << "no error " << endl;

}

Now, we have to process each individual response in the list.

A few words on error handling and data extraction

Depending of the application and/or the developer’s programming habits, each individual error can be handle by the
C++ (or Java) exception mechanism or using the dedicated has_failed() method. The GroupReply class - which
is the mother class of both GroupCmdReply and GroupAttrReply - contains a static method to enable (or disable)
exceptions called enable_exception(). By default, exceptions are disabled. The following example is proposed with
both exceptions enable and disable.

In C++, data can be extracted directly from an individual reply. The GroupCmdReply interface contains a template
operator >> allowing the extraction of any supported Tango type (in fact the actual data extraction is delegated to
DeviceData::operator >>). One dedicated extract method is also provided in order to extract DevVarLongStringArray
and DevVarDoubleStringArray types to std::vectors.

Error and data handling C++ example:

/7

//—= synch. group command example with exception enabled

(continues on next page)

106 Chapter 6. Developer’s Guide

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

58

59

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

//— enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception (true);
//— process each response in the list
for (int r = 0; r < crl.size(); r++)
{
//— enter a try/catch block
try
{
//— try to extract the data from the r-th reply
//— suppose data contains a double
double ans;
crl[r] >> ans;
cout << crl[r].dev_name ()

<< Mo

<< crlfr].obj_name()
<< " returned "

<< ans

<< endl;

}
catch (const DevFaileds df)
{
//— DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{
cout << "error: " << df.errors[err].desc.in() << endl;
}
//— alternatively, one can use crl[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";

}

//— restore last exception mode (if needed)

GroupReply: :enable_exception (last_mode) ;

//— Clear the response list (if reused later in the code)
crl.reset ();

//— synch. group command example with exception disabled

//— disable exceptions and save current mode bool
last_mode = GroupReply::enable_exception(false);
//— process each response in the 1list
for (int r = 0; r < crl.size(); r++)
{
//—- did the r—th device give error?
if (crl(r].has_failed() == true)
{
//— printout error description
cout << "an error occurred while executing "
<< crl[r].obj_name ()
<< " on "
<< crlfr].dev_name () << endl;
//— dump error stack

(continues on next page)

6.4. Tango Client

107

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

86

88

89

90

91

92

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

const DevErrorListé& el = crlr].get_err_stack();
for (int err = 0; err < el.size(); err++)
{

cout << ellerr].desc.in();

}
else
{
//—= no error (suppose data contains a double)
double ans;
bool result = crllr] >> ans;
if (result == false)
{
cout << "could not extract double from "
<< crllr].dev_name ()
<< " reply"
<< endl;

else

cout << crlf[r].dev_name ()

<< ll::"

<< crlr].obj_name ()
<< " returned "

<< ans

<< endl;

}

//— restore last exception mode (if needed)

GroupReply: :enable_exception (last_mode) ;

//— Clear the response list (if reused later in the code)
crl.reset ();

Now execute the same command asynchronously. C++ example:

//— asynch. group command example (C++ example)

long request_id = gauges->command_inout_asynch ("Status");
//— do some work
do_some_work () ;

//— get results

crl = gauges->command_inout_reply (request_id);

//— process responses as previously describe in the synch. implementation
for (int r = 0; r < crl.size(); r++)

//— data processing and error handling goes here

//— copy/paste code from previous example

//— clear the response list (if reused later in the code)
crl.reset ();

108 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Case 2: a command, one argument

Here, we give an example in which the same input argument is applied to all devices in the group (or its sub-groups).

In C++:

//— the argument value

double d = 0.1;

//— insert it into the TANGO generic container for command: DeviceData
Tango: :DeviceData dd;

dd << d;

//— execute the command: Dev._Void SetDummyFactor (Dev_Double)

Tango: :GroupCmdReplyList crl = gauges—>command_inout ("SetDummyFactor", dd);

Since the SetDummyFactor command does not return any value, the individual replies (i.e. the GroupCmdReply) do
not contain any data. However, we have to check their has_failed() method returned value to be sure that the command
completed successfully on each device (acknowledgement). Note that in such a case, exceptions are useless since we
never try to extract data from the replies.

In C++ we should have something like:

//— no need to process the results if no error occurred (Dev_Void command)
if (crl.has_failed())
{
//— at least one error occurred
for (int r = 0; r < crl.size(); r++)
{
//— handle errors here (see previous C++ examples)
}
}
//— clear the response list (if reused later in the code)
crl.reset ();

See case 1 for an example of asynchronous command.

Case 3: a command, several arguments

Here, we give an example in which a specific input argument is applied to each device in the hierarchy. In order to
use this form of command_inout, the user must have an a priori and perfect knowledge of the devices order in the
hierarchy. In such a case, command arguments are passed in an array (with one entry for each device in the hierarchy).

The C++ implementation provides a template method which accepts a std::vector of C++ type for command argument.
This allows passing any kind of data using a single method.

The size of this vector must equal the number of device in the hierarchy (respectively the number of device in the
group) if the forward option is set to true (respectively set to false). Otherwise, an exception is thrown.

The first item in the vector is applied to the first device in the hierarchy, the second to the second device in the hierarchy,
and so on. .. That’s why the user must have a perfect knowledge of the devices order in the hierarchy.

Assuming that gauges are ordered by name, the SetDummyFactor command can be executed on group cell-01 (and its
sub-groups) as follows:

Remember, cell-01 has the following internal structure:

-> gauges
| —> cell-01
\ |-> inst-c0l/vac-gauge/strange

(continues on next page)

6.4. Tango Client 109

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

| | -> penning

\ \ |-> inst-c01l/vac—-gauge/penning-01
| | | -> inst-c0l/vac—-gauge/penning-02
\ \ [-> ...

\ \ | -> inst-c0l/vac—gauge/penning—xx
\ |-> pirani

\ | -> inst-c0l/vac-gauge/pirani-01
\ | =>

\ | -> inst-c0l/vac-gauge/pirani-xx

Passing a specific argument to each device in C++:

//- get a reference to the target group

Tango: :Group *g = gauges—>get_group("cell-01");

//— get number of device in the hierarchy (starting at cell-01)
long n_dev = g->get_size(true);

//—= Build argin list

std: :vector<double> argins (n_dev);

//—= argument for inst-c0l/vac-gauge/strange

argins[0] = 0.0;

//— argument for inst-c0l/vac-gauge/penning-01
argins[1l] = 0.1;

//— argument for inst-c0l/vac-gauge/penning-02
argins([2] = 0.2;

//- argument for remaining devices in cell-01.penning

//— argument for devices in cell-0l.pirani

//— the reply list

Tango: :GroupCmdReplyList crl;

//— enter a try/catch block (see below)

try

{

//— execute the command
crl = g->command_inout ("SetDummyFactor", argins, true);
if (crl.has_failed())
{

//— error handling goes here (see case 1)
}

}

catch (const DevFaileds df)

{

//— see below

}

crl.reset ();

If we want to execute the command locally on cell-01 (i.e. not on its sub-groups), we should write the following C++
code:

//- get a reference to the target group

Tango: :Group *g = gauges—>get_group("cell-01");

//— get number of device in the group (starting at cell-01)
long n_dev = g->get_size(false);

//—= Build argin list

std: :vector<double> argins (n_dev);

//- argins for inst-c0l/vac-gauge/penning-01

(continues on next page)

110 Chapter 6. Developer’s Guide

20

21

22

23

24

25

26

27

28

29

20

21

22

23

24

25

26

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

argins[0] = 0.1;
//—- argins for inst-c0l/vac-gauge/penning-02
argins[l] = 0.2;

//—= argins for remaining devices in cell-01.penning

//—= the reply list

Tango: :GroupCmdReplyList crl;

//— enter a try/catch block (see below)

try

{

//—- execute the command
crl = g->command_inout ("SetDummyFactor", argins, false);
if (crl.has_failed())
{

//—- error handling goes here (see case 1)
}

}

catch (const DevFaileds& df)

{

//- see below

}

crl.reset ();

Note: if we want to execute the command locally on cell-01 (i.e. not on its sub-groups), we should write the following
code:

//— get a reference to the target group

Group g = gauges.get_group("cell-01");

//— get pre-build arguments list for the group (starting@cell-01)
DeviceData[] argins = g.get_command_specific_argument_list (false);
//—- argins for inst-c0l/vac-gauge/penning-01

argins[0] .insert (0.1);

//—= argins for inst-c0l/vac-gauge/penning-02
argins[1l].insert (0.2);

//— argins for remaining devices in cell-01.penning

//—= the reply list

GroupCmdReplyList crl;

//— enter a try/catch block (see below)

try

{

//—- execute the command
crl = g.command_inout ("SetDummyFactor", argins, false, false);
if (crl.has_failed())
{

//— error handling goes here (see case 1)
}

}

catch (DevFailed d)

{

//- see below

}

This form of command_inout (the one that accepts an array of value as its input argument), may throw an exception
before executing the command if the number of elements in the input array does not match the number of individual
devices in the group or in the hierarchy (depending on the forward option).

6.4. Tango Client 111

Tango Controls Documentation, Release 9.3.4

An asynchronous version of this method is also available. See case 1 for an example of asynchronous command.

Reading attribute(s)

In order to read attribute(s), the Group interface contains several implementations of the read_attribute() and
read_attributes() methods. Both synchronous and asynchronous forms are supported. Reading several attributes
is very similar to reading a single attribute. Simply replace the std::string used for attribute name by a vector of
std::string with one element for each attribute name. In case of read_attributes() call, the order of attribute value re-
turned in the GroupAttrReplyList is all attributes for first element in the group followed by all attributes for the second
group element and so on.

Obtaining attribute values

Attribute values are returned using a GroupAttrReplyList. This is nothing but an array containing a GroupAttrReply
for each device in the group. The GroupAttrReply contains the actual data (i.e. the DeviceAttribute). By inheritance,
it may also contain any error occurred during the execution of the command (in which case the data is invalid).

Here again, the Tango Group implementation guarantees that the attribute values are returned in the order in which its
elements were attached to the group. See Obtaining command results for details.

The GroupAttrReply contains some public methods allowing the identification of both the device (GroupAt-
trReply::dev_name) and the attribute (GroupAttrReply::obj_name). It means that, depending of your appli-
cation, you can associate a response with its source using its position in the response list or using the
Tango::GroupAttrReply::dev_name member.

A few words on error handling and data extraction

Here again, depending of the application and/or the developer’s programming habits, each individual error can be
handle by the C++ exception mechanism or using the dedicated has_failed() method. The GroupReply class - which
is the mother class of both GroupCmdReply and GroupAttrReply - contains a static method to enable (or disable)
exceptions called enable_exception(). By default, exceptions are disabled. The following example is proposed with
both exceptions enable and disable.

In C++, data can be extracted directly from an individual reply. The GroupAttrReply interface contains a template
operator>> allowing the extraction of any supported Tango type (in fact the actual data extraction is delegated to
DeviceAttribute::operator>>).

Reading an attribute is very similar to executing a command.

Reading an attribute in C++:

//

//— synch. read "vacuum" attribute on each device in the hierarchy
//— with exceptions enabled - C++ example

//

//— enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception (true);
//— read attribute

Tango: :GroupAttrReplyList arl = gauges—->read_attribute ("vacuum");
//—- for each response 1in the list
for (int r = 0; r < arl.size(); r++)

{
//— enter a try/catch block
try

(continues on next page)

112 Chapter 6. Developer’s Guide

20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

{
//— try to extract the data from the r-th reply
//— suppose data contains a double
double ans;
arl[r] >> ans;
cout << arl[r].dev_name ()

<< Mo
<< arl[r].obj_name ()
<< " value is "

<< ans << endl;
}
catch (const DevFailed& df)
{
//— DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{
cout << "error: " << df.errors[err].desc.in() << endl;
}
//— alternatively, one can use arl|[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";

}

//— restore last exception mode (if needed)
GroupReply: :enable_exception (last_mode) ;

//— clear the reply list (if reused later in the code)
arl.reset ();

In C++, an asynchronous version of the previous example could be:

//— read the attribute asynchronously

long request_id = gauges->read_attribute_asynch ("vacuun") ;
//— do some work

do_some_work () ;

//— get results

Tango: :GroupAttrReplylList arl = gauges->read_attribute_reply (request_id);
//— process replies as previously described in the synch. implementation
for (int r = 0; r < arl.size(); r++)

{

//—- data processing and/or error handling goes here

}
//— clear the reply list (if reused later in the code)
arl.reset();

Writing an attribute

The Group interface contains several implementations of the write_attribute() method. Both synchronous and asyn-
chronous forms are supported. However, writing more than one attribute at a time is not supported.

6.4. Tango Client 113

20

21

22

23

24

25

26

27

28

29

Tango Controls Documentation, Release 9.3.4

Obtaining acknowledgement

Acknowledgements are returned using a GroupReplyList. This is nothing but an array containing a GroupReply for
each device in the group. The GroupReply may contain any error occurred during the execution of the command.
The return value of the has_failed() method indicates whether an error occurred or not. If this flag is set to true, the

GroupReply::get_err_stack() method gives error details.

Here again, the Tango Group implementation guarantees that the attribute values are returned in the order in which its

elements were attached to the group. See Obtaining command results for details.

The GroupReply contains some public members allowing the identification of both the device (GroupRe-
ply::dev_name) and the attribute (GroupReply::obj_name). It means that, depending of your application, you can

associate a response with its source using its position in the response list or using

Case 1: one value for all devices

Here, we give an example in which the same attribute value is written on all devices in the group (or its sub-groups).

Exceptions are supposed to be disabled.

Writing an attribute in C++:

//— synch. write "dummy" attribute on each device in the hierarchy

//— assume each device support a "dummy" writable attribute
//— insert the value to be written into a generic container
Tango: :DeviceAttribute value(std::string("dummy"), 3.14159);
//— write the attribute
Tango: :GroupReplyList rl = gauges->write_attribute (value);
//— any error?
if (rl.has_failed() == false)
{
cout << "no error" << endl;
}
else
{
cout << "at least one error occurred" << endl;
//— for each response in the 1list
for (int r = 0; r < rl.size(); r++)
{
//— did the r-th device give error?
if (rl[r].has_failed() == true)
{

//—- printout error description
n

cout << "an error occurred while reading
<< rl[r].obj_name ()

<< " on "
<< rl[r].dev_name ()
<< endl;
//— dump error stack
const DevErrorList& el = rl[r].get_err_stack();
for (int err = 0; err < el.size(); err++)

{

cout << ellerr].desc.in();

(continues on next page)

114 Chapter 6.

Developer’s Guide

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

}
//— clear the reply list (if reused later in the code)

rl.reset();

Here is a C++ asynchronous version:

//— insert the value to be written into a generic container
Tango: :DeviceAttribute value (std::string("dummy"), 3.14159);
//— write the attribute asynchronously

long request_id = gauges.write_attribute_asynch(value);

//— do some work

do_some_work () ;

//— get results
Tango: :GroupReplyList rl = gauges->write_attribute_reply (request_id);
//— process replies as previously describe in the synch. implementation

Case 2: a specific value per device

Here, we give an example in which a specific attribute value is applied to each device in the hierarchy. In order to
use this form of write_attribute(), the user must have an a priori and perfect knowledge of the devices order in the
hierarchy.

The C++ implementation provides a template method which accepts a std::vector of C++ type for command argument.
This allows passing any kind of data using a single method.

The size of this vector must equal the number of device in the hierarchy (respectively the number of device in the
group) if the forward option is set to true (respectively set to false). Otherwise, an exception is thrown.

The first item in the vector is applied to the first device in the group, the second to the second device in the group, and
so on...That’s why the user must have a perfect knowledge of the devices order in the group.

Assuming that gauges are ordered by name, the dummy attribute can be written as follows on group cell-01 (and its
sub-groups) as follows:

Remember, cell-01 has the following internal structure:

-> gauges
| —> cell-01
| |-> inst-c0l/vac-gauge/strange
| | -> penning
| \ |-> inst-c01l/vac—gauge/penning-01
[\ |-> inst-c01l/vac-gauge/penning-02
\ \ [=> ...
| \ |-> inst-c0l/vac—gauge/penning—-xx
\ |-> pirani
| |-> inst-c0l/vac-gauge/pirani-01
| | =>
| | -> inst-c0l/vac—-gauge/pirani-xx

C++ version:

//— get a reference to the target group
Tango: :Group *g = gauges—->get_group ("cell-01");

(continues on next page)

6.4. Tango Client 115

20
21
2
23
24
25
26
27
28
29

30

32

33

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

//— get number of device in the hierarchy (starting at cell-01)

long n_dev =

g->get_size(true);

//— Build value list
std: :vector<double> values (n_dev);

//— value for

values[0] = 3.
//— value for
values[1l] = 2
//— value for
values[2] = 3
//— value for
//— value for

//~ the reply

inst-c0l/vac—-gauge/strange

14159;

inst-c01/vac-gauge/penning-01

* 3.14159;
inst-c01/vac-gauge/penning—-02

* 3.14159;

remaining devices in cell-01.penning

devices in cell-0l.pirani

list

Tango: :GroupReplyList rl;
//— enter a try/catch block (see below)

try

{

//— write the
rl =

g->write_attribute ("dummy",

"dummy" attribute

values, true);

if (rl.has_failed())

{

//—- error handling (see previous cases)

}
}

catch (const DevFaileds df)

{
//— see below
}

rl.reset();

Note: if we want to execute the command locally on cell-01 (i.e. not on its sub-groups), we should write the following

code

//— get a reference to the target group

Tango: :Group *g =

gauges—>get_group ("cell-01");

//— get number of device in the group

long n_dev =

g->get_size(false);

//— Build value list
std: :vector<double> values (n_dev);

//— value for

values[0] = 2
//— value for
values[1l] = 3

//— value for

//— the reply

inst-c01/vac-gauge/penning-01

* 3.14159;
inst-c01/vac-gauge/penning-02

* 3.14159;

remaining devices in cell-01.penning

list

Tango: :GroupReplyList rl;
//— enter a try/catch block (see below)

try

{

//— write the
rl =

g->write_attribute ("dummy",

"dummy" attribute

values, false);

if (rl.has_failed())

{

(continues on next page)

116

Chapter 6. Developer’s Guide

23

24

25

26

27

28

29

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

//— error handling (see previous cases)
}

}

catch (const DevFaileds& df)

{

//— see below

}

rl.reset();

This form of write_attribute() (the one that accepts an array of value as its input argument), may throw an exception
before executing the command if the number of elements in the input array does not match the number of individual
devices in the group or in the hierarchy (depending on the forward option).

An asynchronous version of this method is also available.

Reading/Writing device pipe

Reading or writing device pipe is made possible using DeviceProxy class methods. To read a pipe, you have to use
the method read_pipe(). To write a pipe, use the write_pipe() method. A method write_read_pipe() is also provided
in case you need to write then read a pipe in a non-interuptible way. All these calls generate synchronous request and
support only reading or writing a single pipe at a time. Those pipe related DeviceProxy class methods (read_pipe,
write_pipe,. ..) use DevicePipe class instances. A DevicePipe instance is nothing more than a string for the pipe name
and a DevicePipeBlob instance called the root blob. In a DevicePipeBlob instance, you have:

* The blob name
* One array of DataElement. Each instance of this DataElement class has:
— A name
— A value which can be either
Scalar or array of any basic Tango type
Another DevicePipeBlob

Therefore, this is a recursive data structure and you may have DevicePipeBlob in DevicePipeBlob. There is no limit on
the depth of this recursivity even if it is not recommended to have a too large depth. The following figure summarizes
DevicePipe data structure

6.4. Tango Client 117

[e Y S O

Tango Controls Documentation, Release 9.3.4

DevicePipe

Pipe name DevicePipeBlob

blob name DataElement value

name -
DataElement m——— | -~

DevicePipeBlob value .. Data

root blob | hame | s or

DataElement value . DevicePipeBlob

name

DataElement
value

name
DataElement
value

Fig. 1: Figure 4.1: DevicePipe data structure

Many methods to insert/extract data into/from a DevicePipe are available. In the DevicePipe class, these methods
simply forward their action to the DevicePipe root blob. The same methods are available in the DevicePipeBlob in
case you need to use the recursivity provided by this data structure.

Reading a pipe

When you read a pipe, you have to extract data received from the pipe. Because data transferred through a pipe can
change at any moment, two differents cases are possible:

1. The client has a prior knowledge of what should be transferred through the pipe
2. The client does not know at all what has been received through the pipe

Those two cases are detailed in the following sub-chapters.

Extracting data with pipe content prior knowledge

To extract data from a DevicePipe object (or from a DevicePipeBlob object), you have to use its extraction operator
>>. Let’s suppose that we already know (prior knowledge) that the pipe contains 3 data elements with a Tango long,
an array of double and finally an array of unsigned short. The code you need to extract these data is (Without error
case treatment detailed in a next sub-chapter)

DevicePipe dp = mydev.read_pipe ("MyPipe");

DevLong dl;

vector<double> v_db;

DevVarUShortArray *dvush = new DevVarUShortArray();

dp >> dl >> v_db >> dvush;

delete dvush;

118 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

The pipe is read at line 1. Pipe (or root blob) data extracttion is at line 7. As you can see, it is just a matter of
chaining extraction operator (>>) into local data (declared line 3 to 5). In this example, the transported array of double
is extracted into a C++ vector while the unsigned short array is extracted in a Tango sequence data type. When you
extract data into a vector, there is a unavoidable memory copy between the DevicePipe object and the vector. When you
extract data in a Tango sequence data type, there is no memory copy but the extraction method consumes the memory
and it is therefore caller responsability to delete the memory. This is the rule of line 9. If there is a DevicePipeBlob
inside the DevicePipe, simply extract it into one instance of the DevicePipeBlob class.

You may notice that the pipe root blob data elements name are lost in the previous example. The Tango API also has
a DataElement class which allows you to retrieve/set data element name. The following code is how you can extract
pipe data and retrieve data element name (same pipe then previously)

DevicePipe dp = mydev.read_pipe ("MyPipe");

DataElement<DevLong> de_dl;

DataElement<vector<double> > de_v_db;

DataElement<DevVarUShortArray =*> de_dvush (new DevVarUShortArray());

dp >> de_dl >> de_v_db >> de_dvush;

delete de_dvush.value;

The extraction line (number 7) is similar to the previous case but local data are instances of DataElement class. This is
template class and instances are created at lines 4 to 6. Each DataElement instance has only two elements which are:

1. The data element name (a C++ string): name

2. The data element value (One instance of the template parameter): value

Extracting data in a generic way (without prior knowledge)

Due to the dynamicity of the data transferred through a pipe, the API alows to extract data from a pipe without any prior
knowledge of its content. This is achived with methods get_data_elt_nb(), get_data_elt_type(), get_data_elt_name()
and the extraction operator >>. These methods belong to the DevicePipeBlob class but they also exist on the Devi-
cePipe class for its root blob. Here is one example of how you use them:

DevicePipe dp = mydev.read_pipe ("MyPipe");

size_t nb_de = dp.get_data_elt_nb();
for (size_t loop = 0;loop < nb_de;loop++)
{
int data_type = dp.get_data_elt_type (loop);
string de_name = dp.get_data_elt_name (loop);
switch (data_type)
{
case DEV_LONG:
{
DevLong 1lg;
dp >> 1lg;
}

break;

case DEVVAR DOUBLEARRAY:
{
vector<double> v_db;
dp >> v_db;

(continues on next page)

6.4. Tango Client 119

Tango Controls Documentation, Release 9.3.4

(continued from previous page)

break;

The number of data element in the pipe root blob is retrieve at line 3. Then a loop for each data element is coded. For
each data element, its value data type and its name are retrieved at lines 6 and 7. Then, according to the data element
value data type, the data are extracted using the classical extraction operator (lines 13 or 20)

Error management

By default, in case of error, the DevicePipe object throws different kind of exceptions according to the error kind. It
is possible to disable exception throwing. If you do so, the code has to test the DevicePipe state after extraction. The
possible error cases are:

* DevicePipe object is empty

* Wrong data type for extraction (For instance extraction into a double data while the DataElement contains a
string)

* Wrong number of DataElement (Extraction code extract 5 data element while the pipe contains only four)
* Mix of extraction (or insertion) method kind (classical operators << or >>) and [] operator.

Methods exceptions() and reset_exceptions() of the DevicePipe and DevicePipeBlob classes allow the user to select
which kind of error he is interested in. For error treatment without exceptions, methods has_failed() and state() has to
be used. See reference documentation for details about these methods.

Writing a pipe

Writing data into a DevicePipe or a DevicePipeBlob is similar to reading data from a pipe. The main method is the
insertion operator <<. Let’s have a look at a first example if you want to write a pipe with a Tango long, a vector of
double and finally an array of unsigned short.

DevicePipe dp ("MyPipe");

vector<string> de_names {"FirstDE","SecondDE","ThirdDE"};
db.set_data_elt_names (de_names) ;

DevLong dl = 666;

vector<double> v_db {1.11,2.22};

unsigned short xarray = new unsigned short [100];
DevVarUShortArray *dvush = create_DevVarUShortArray (array,100);

try

{
dp << dl << v_db << dvush;
mydev.write_pipe (dp);

}

catch (DevFailed ¢&e)

{

cout << "DevicePipeBlob insertion failed" << endl;

120 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Insertion into the DevicePipe is done at line 12 with the insert operators. The main difference with extracting data
from the pipe is at line 3 and 4. When inserting data into a pipe, you need to FIRST define its number od name of
data elements. In our example, the device pipe is initialized to carry three data element and the names of these data
elements is defined at line 4. This is a mandatory requirement. If you don’t define data element number, exception
will be thrown during the use of insertion methods. The population of the array used for the third pipe data element is
not represented here.

It’s also possible to use DataElement class instances to set the pipe data element. Here is the previous example
modified to use DataElement class.

DevicePipe dp ("MyPipe");

DataElement<DevLong> de_dl ("FirstEIt",666);
vector<double> v_db {1.11,2.22};
DataElement<vector<double> > de_v_db ("SecondElt,v_db");

unsigned short xarray = new unsigned short [100];
DevVarUShortArray =*dvush = create_DevVarUShortArray (array,100);
DataElement<DevVarUShortArray > de_dvush("ThirdDE",array);

try

{
dp << de_dl << de_v_db << de_dvush;
mydev.write_pipe (dp);

}

catch (DevFailed &e)

{

cout << "DevicePipeBlob insertion failed" << endl;

The population of the array used for the third pipe data element is not represented here. Finally, there is a third way to
insert data into a device pipe. You have to defined number and names of the data element within the pipe (similar to
first insertion method) but you are able to insert data into the data element in any order using the operator overwritten
for the DevicePipe and DevicePipeBlob classes. Look at the following example:

DevicePipe dp ("MyPipe");

vector<string> de_names {"FirstDE","SecondDE","ThirdDE"};
db.set_data_elt_names (de_names) ;

DevLong dl = 666;

vector<double> v_db = {1.11,2.22};

unsigned short xarray = new unsigned short [100];
DevVarUShortArray xdvush = create_DevVarUShortArray(array,100);

dp["SecondDE"] << v_db;
dp["FirstDE"] << dl;
dp["ThirdDE"] << dvush;

Insertion into the device pipe is now done at lines 11 to 13. The population of the array used for the third pipe data
element is not represented here. Note that the data element name is case insensitive.

Error management

When inserting data into a DevicePipe or a DevicePipeBlob, error management is very similar to reading data from
from a DevicePipe or a DevicePipeBlob. The difference is that there is one more case which could trigger one excep-

6.4. Tango Client 121

Tango Controls Documentation, Release 9.3.4

tion during the insertion. This case is

* Insertion into the DevicePipe (or DevicePipeBlob) if its data element number have not been set.

Device locking

Starting with Tango release 7 (and device inheriting from Device_4Impl), device locking is supported. For instance,
this feature could be used by an application doing a scan on a synchrotron beam line. In such a case, you want to move
an actuator then read a sensor, move the actuator again, read the sensor. .. You don’t want the actuator to be moved by
another client while the application is doing the scan. If the application doing the scan locks the actuator device, it
will be sure that this device is reserved for the application doing the scan and other client will not be able to move it
until the scan application un-locks this actuator.

A locked device is protected against:

» command_inout call except for device state and status requested via command and for the set of commands
defined as allowed following the definition of allowed command in the Tango control access schema.

* write_attribute and write_pipe call

* write_read_attribute, write_read_attributes and write_read_pipe call
* set_attribute_config and set_pipe_config call

¢ polling and logging commands related to the locked device

Other clients trying to do one of these calls on a locked device will get a DevFailed exception. In case of application
with locked device crashed, the lock will be automatically release after a defined interval. The API provides a set of
methods for application code to lock/unlock device. These methods are:

e DeviceProxy::lock() and DeviceProxy::unlock() to lock/unlock device

e DeviceProxy::locking_status(), DeviceProxy::is_locked(), DeviceProxy::is_locked_by_me() and Device-
Proxy::get_locker() to get locking information

These methods are precisely described in the API reference chapters.

Reconnection and exception

The Tango API automatically manages re-connection between client and server in case of communication error during
a network access between a client and a server. By default, when a communication error occurs, an exception is
returned to the caller and the connection is internally marked as bad. On the next try to contact the device, the API will
try to re-build the network connection. With the set_transparency_reconnection() method of the DeviceProxy class,
it is even possible not to have any exception thrown in case of communication error. The API will try to re-build the
network connection as soon as it is detected as bad. This is the default mode. See Reconnection and exception for
more details on this subject.

Thread safety

Starting with Tango 7.2, some classes of the C++ API has been made thread safe. These classes are:
* DeviceProxy
* Database
* Group
» ApiUtil
* AttributeProxy

122 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

This means that it is possible to share between threads a pointer to a DeviceProxy instance. It is safe to execute a call
on this DeviceProxy instance while another thread is also doing a call to the same DeviceProxy instance. Obviously,
this also means that it is possible to create thread local DeviceProxy instances and to execute method calls on these
instances. Nevertheless, data local to a DeviceProxy instance like its timeout are not managed on a per thread basis.
For a DeviceProxy instance shared between two threads, if thread 1 changes the instance timeout, thread 2 will also
see this change.

Compiling and linking a Tango client

Compiling and linking a Tango client is similar to compiling and linking a Tango device server. Please, refer to chapter
Compiling and linking a C++ device server to get all the details.

6.4. Tango Client 123

Tango Controls Documentation, Release 9.3.4

6.4.2 TangoATK Programmer’s Guide

Intended audience: developers, Programming language: java

This chapter is only a brief Tango ATK (Application ToolKit) programmer’s guide. You can find a reference guide
with a full description of TangoATK classes and methods in the ATK JavaDoc (Tango ATK reference on-line docu-
mentation).

A tutorial document Tango ATK Tutorial is also provided and includes the detailed description of the ATK architecture
and the ATK components. In the ATK Tutorial you can find some code examples and also Flash Demos which explain
how to start using Tango ATK.

Introduction

This document describes how to develop applications using the Tango Application Toolkit, TangoATK for short. It will
start with a brief description of the main concepts behind the toolkit, and then continue with more practical, real-life
examples to explain key parts.

Assumptions

The author assumes that the reader has a good knowledge of the Java programming language, and a thorough under-
standing of object-oriented programming. Also, it is expected that the reader is fluent in all aspects regarding Tango
devices, attributes, and commands.

The key concepts of TangoATK

TangoATK was developed with these goals in mind
* TangoATK should help minimize development time
* TangoATK should help minimize bugs in applications
» TangoATK should support applications that contain attributes and commands from several different devices.
* TangoATK should help avoid code duplication.

Since most Tango-applications were foreseen to be displayed on some sort of graphic terminal, TangoATK needed to
provide support for some sort of graphic building blocks. To enable this, and since the toolkit was to be written in
Java, we looked to Swing to figure out how to do this.

Swing is developed using a variant over a design-pattern the Model-View-Controller (MVC) pattern called model-
delegate, where the view and the controller of the MVC-pattern are merged into one object.

124 Chapter 6. Developer’s Guide

http://www.esrf.eu/computing/cs/tango/tango_doc/atk_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/atk_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/atk_tutorial/Tutorials.pdf
http://www.esrf.eu/computing/cs/tango/tango_doc/atk_tutorial/Tutorials.pdf

Tango Controls Documentation, Release 9.3.4

W dget

This pattern made the choice of labor division quite easy: all non-graphic parts of TangoATK reside in the packages
beneath fr.esrf.tangoatk.core, and anything remotely graphic are located beneath fr.esrf.tangoatk.widget. More on the
content and organization of this will follow.

The communication between the non-graphic and graphic objects are done by having the graphic object registering
itself as a listener to the non-graphic object, and the non-graphic object emmiting events telling the listeners that its
state has changed.

Minimize development time

For TangoATK to help minimize the development time of graphic applications, the toolkit has been developed along
two lines of thought

» Things that are needed in most applications are included, eg Splash, a splash window which gives a graphical
way for the application to show the progress of a long operation. The splash window is moslty used in the
startup phase of the application.

* Building blocks provided by TangoATK should be easy to use and follow certain patterns, eg every graphic
widget has a setModel method which is used to connect the widget with its non-graphic model.

In addition to this, TangoATK provides a framework for error handling, something that is often a time consuming task.

Minimize bugs in applications

Together with the Tango API, TangoATK takes care of most of the hard things related to programming with Tango.
Using TangoATK the developer can focus on developing her application, not on understanding Tango.

Attributes and commands from different devices

To be able to create applications with attributes and commands from different devices, it was decided that the central
objects of TangoATK were not to be the device, but rather the attributes and the commands. This will certainly feel a
bit awkward at first, but trust me, the design holds.

6.4. Tango Client 125

Tango Controls Documentation, Release 9.3.4

For this design to be feasible, a structure was needed to keep track of the commands and attributes, so the command-
list and the attribute-list was introduced. These two objects can hold commands and attributes from any number of
devices.

Avoid code duplication

When writing applications for a control-system without a framework much code is duplicated. Anything from simple
widgets for showing numeric values to error handling has to be implemented each time. TangoATK supplies a number
of frequently used widgets along with a framework for connecting these widgets with their non-graphic counterparts.
Because of this, the developer only needs to write the glue - the code which connects these objects in a manner that
suits the specified application.

The real getting started

Generally there are two kinds of end-user applications: Applications that only know how to treat one device, and
applications that treat many devices.

Single device applications

Single device applications are quite easy to write, even with a gui. The following steps are required
1. Instantiate an AttributeList and fill it with the attributes you want.
2. Instantiate a CommandList and fill it with the commands you want.
3. Connect the whole AttributeList with a list viewer and / or each individual attribute with an attribute viewer.

4. Connect the whole CommandList to a command list viewer and / or connect each individual command in the
command list with a command viewer.

126 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Error. ..

Attri bute

| i st

Attri bute

The following program (FirstApplication) shows an implementation of the list mentioned above
self-explanatory with the comments.

1

O J o U w N

11
12
13
14
15
16
17
18
19
20

package examples;

import
import
import
import

import
import
import

import
import

import
import

javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.

JFrame;
JMenultem;
JMenuBar;
JMenu;

java.awt.event.ActionListener;
java.awt.event.ActionEvent;
java.awt .BorderLayout;

fr.esrf.tangoatk.core.Attributelist;
fr.esrf.tangoatk.core.ConnectionException;

fr.esrf.tangoatk.core.CommandList;
fr.esrf.tangoatk.widget.util.ErrorHistory;

. It should be rather

6.4. Tango Client

127

Tango Controls Documentation, Release 9.3.4

21 import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
22 import fr.esrf.tangoatk.widget.attribute.ScalarListViewer;
23 import fr.esrf.tangoatk.widget.command.CommandComboViewer;
24
25
26 public class FirstApplication extends JFrame
27 |
28 JMenuBar menu; // So that our application looks
29 // halfway decent.
30 AttributelList attributes; // The list that will contain our
31 // attributes
32 CommandList commands; // The list that will contain our
33 // commands
34 ErrorHistory errorHistory; // A window that displays errors
35 ScalarlListViewer sListViewer; // A viewer which knows how to
36 // display a list of scalar attributes.
37 // If you want to display other types
38 // than scalars, you'll have to wait
39 // for the next example.
40 CommandComboViewer commandViewer; // A viewer which knows how to display
41 // a combobox of commands and execute
42 // them.
43 String device; // The name of our device.
44
45
46 public FirstApplication()
47
48 // The swing stuff to create the menu bar and its pulldown menus
49 menu = new JMenuBar ();
50 JMenu fileMenu = new JMenu() ;
51 fileMenu.setText ("File");
52 JMenu viewMenu = new JMenu() ;
53 viewMenu.setText ("View") ;
54
55 JMenultem quitItem = new JMenultem();
56 quitItem.setText ("Quit");
57 quitItem.addActionListener (new
58 java.awt.event.ActionListener ()
59 {
60 public void
6l actionPerformed (ActionEvent evt)
62 {quitItemActionPerformed (evt);}
63 P
64 fileMenu.add(quitItem);
65
66 JMenultem errorHistItem = new JMenultem();
67 errorHistItem.setText ("Error History");
68 errorHistItem.addActionListener (new
69 java.awt.event.ActionListener ()
70 {
71 public void
72 actionPerformed (ActionEvent evt)
73 {errHistItemActionPerformed (evt);}
74 1)
128 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

75 viewMenu.add (errorHistItem) ;

76 menu.add (fileMenu) ;

77 menu.add (viewMenu) ;

78

79 //

80 // Here we create ATK objects to handle attributes, commands and_
< errors.

81 //

82 attributes = new AttributelList ();

83 commands = new CommandList ();

84 errorHistory = new ErrorHistory();

85 device = "idl4/eh3 _mirror/1";

86 sListViewer = new ScalarListViewer();

87 commandViewer = new CommandComboViewer ();
88

89

°%0 //

91 // A feature of the command and attribute list is that if you
92 // supply an errorlistener to these lists, they'll add that
93 // errorlistener to all subsequently created attributes or
94 // commands. So it is important to do this _before_ you
95 // start adding attributes or commands.
96 //
97
98 attributes.addErrorListener (errorHistory);
99 commands.addErrorListener (errorHistory);
100
101 //
102 // Sometimes we're out of luck and the device or the attributes
103 // are not available. In that case a ConnectionException is thrown.
104 // This is why we add the attributes in a try/catch
105 //
106
107 try
108 {
109
110 //
111 // Another feature of the attribute and command list is that they
112 // can add wildcard names, currently only "*' 1s supported.
113 // When using a wildcard, the lists will add all commands or
114 // attributes available on the device.
115 //
116 attributes.add (device + "/x");
117 }
118 catch (ConnectionException ce)
119 {
120 System.out.println ("Error fetching " +
121 "attributes from " +
122 device + " " 4+ ce);
123 }
124
125
126 //
127 // See the comments for attributelist

6.4. Tango Client 129

Tango Controls Documentation, Release 9.3.4

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

//

//
//
//
//
//

//
//
//
//

//
//
//

//
//
//

//
//
//

try
{

commands .add (device + "/*");

}

catch (ConnectionException ce)

{

System.out.println ("Error fetching " +
"commands from " +

device + "

+ ce);

Here we tell the scalarViewer what it's to show. The
ScalarListViewer loops through the attribute-list and picks out
the ones which are scalars and show them.

sListViewer.setModel (attributes);

This is where the CommandComboViewer is told what it's to
show. It knows how to show and execute most commands.

commandViewer.setModel (commands) ;

add the menubar to the frame

setJMenuBar (menu) ;

Make the layout nice.

getContentPane () .setLayout (new BorderLayout ());
getContentPane () .add (commandViewer, BorderLayout.NORTH) ;

getContentPane () .add(sListViewer,

BorderLayout.SOUTH) ;

A third feature of the attributelist is that it knows how

to refresh its attributes.

130

Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

182 //

183

184

185 attributes.startRefresher () ;

186

187

188 //

189 // JFrame stuff to make the thing show.
190 //

191

192

193 pack () ;

194 ATKGraphicsUtils.centerFrameOnScreen (this); //ATK utility to center
—window

195

196 setVisible (true);

197 }

198

199

200 public static void main(String [] args)
201 {

202 new FirstApplication();

203 }

204

205 public void quitItemActionPerformed (ActionEvent evt)
206 {

207 System.exit (0);

208 }

209

210 public void errHistItemActionPerformed (ActionEvent evt)
211 {

212 errorHistory.setVisible (true);

213 }

214 1}

The program should look something like this (depending on your platform and your device)

6.4. Tango Client 131

Tango Controls Documentation, Release 9.3.4

N 5

File “iew

Z Mirrar Center | 154.958 mm

Y Mirror Center | 5515 mm

[I—

Mirror Rall | 4590 mRad 0dod 590
Mirror Pitch | 5179 mRad goge 179
Mirror Yaw [19.320 mRad - 5019 320
0 e
front coder -0.622 mm

ext coder | 0186 mm

int coder | 0.745 mm

£ [B (]] I

Multi device applications

Multi device applications are quite similar to the single device applications, the only difference is that it does not
suffice to add the attributes by wildcard, you need to add them explicitly, like this:

1
2
3
4
5
6
7
8

9
10
11
12
13
14

try
{
// a StringScalar attribute from the device one

attributes.add ("jlp/test/1/att_cing");
// a NumberSpectrum attribute from the device one
attributes.add("jlp/test/1/att_spectrum");
// a NumberImage attribute from the device two
attributes.add ("sr/d-ipc/id25-1n/Image");

}

catch (ConnectionException ce)

{
System.out.println("Error fetching " +

"attributes" + ce);

}

The same goes for commands.

More on displaying attributes

So far, we’ve only considered scalar attributes, and not only that, we’ve also cheated quite a bit since we just
passed the attribute list to the fr.esrf.tangoatk.widget.attribute.ScalarListViewer and let it
do all the magic. The attribute list viewers are only available for scalar attributes (NumberScalarListViewer and
ScalarListViewer). If you have one or several spectrum or image attributes you must connect each spectrum or image
attribute to it’s corresponding attribute viewer individually. So let’s take a look at how you can connect individual

attributes (and not a whole attribute list) to an individual attribute viewer (and not to an attribute list viewer).

132

Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Connecting an attribute to a viewer

Generally it is done in the following way:

1. You retrieve the attribute from the attribute list

2. You instantiate the viewer

3. Your call the setModel method on the viewer with the attribute as argument.

4. You add your viewer to some panel

The following example (SecondApplication), is a Multi-device application. Since this application uses individual
attribute viewers and not an attribute list viewer, it shows an implementation of the list mentioned above.

1 package examples;
2
3
4 import javax.swing.JFrame;
5 import javax.swing.JMenultem;
6 import javax.swing.JMenuBar;
7 import javax.swing.JMenu;
8
9
10 import java.awt.event.ActionListener;
11 import java.awt.event.ActionEvent;
12 import java.awt.BorderLayout;
13 import Jjava.awt.Color;
14
15
16 import fr.esrf.tangoatk.core.Attributelist;
17 import fr.esrf.tangoatk.core.ConnectionException;
18
19 import fr.esrf.tangoatk.core.IStringScalar;
20 import fr.esrf.tangoatk.core.INumberSpectrum;
21 import fr.esrf.tangoatk.core.INumberImage;
22 import fr.esrf.tangoatk.widget.util.ErrorHistory;
23 import fr.esrf.tangoatk.widget.util.Gradient;
24 import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
25 import fr.esrf.tangoatk.widget.attribute.NumberImageViewer;
26 import fr.esrf.tangoatk.widget.attribute.NumberSpectrumViewer;
27 import fr.esrf.tangoatk.widget.attribute.SimpleScalarViewer;
28
29 public class SecondApplication extends JFrame
30 {
31 JMenuBar menu;
32 Attributelist attributes; // The list that will contain_
—our attributes
33 ErrorHistory errorHistory; // A window that displays errors
34 IStringScalar ssAtt;
35 INumberSpectrum nsAtt;
36 INumberImage niAtt;
37 public SecondApplication ()
38 {
39 // Swing stuff to create the menu bar and its pulldown menus
40 menu = new JMenuBar () ;
41 JMenu fileMenu = new JMenu();

6.4. Tango Client

133

Tango Controls Documentation, Release 9.3.4

42 fileMenu.setText ("File");

43 JMenu viewMenu = new JMenu() ;

44 viewMenu.setText ("View");

45 JMenultem gquitItem = new JMenultem();

46 quitItem.setText ("Quit");

47 quitItem.addActionListener (new java.awt.event.ActionListener ()
48 {

49 public void,,

—actionPerformed (ActionEvent evt)

50 {quitItemActionPerformed (evt);}
51)i

52

53 fileMenu.add (quitItem) ;

54 JMenultem errorHistItem = new JMenultem();

55 errorHistItem.setText ("Error History");

56 errorHistItem.addActionListener (new java.awt.event.
—ActionListener ()

57 {

58 public void actionPerformed (ActionEvent evt)

59 {errHistItemActionPerformed (evt);}

60 P

ol viewMenu.add (errorHistItem) ;

62 menu.add (fileMenu) ;

63 menu.add (viewMenu) ;

64 //

65 // Here we create TangoATK objects to view attributes and errors.
66 //

67 attributes = new AttributelList ();

68 errorHistory = new ErrorHistory();

69 //

70 // We create a SimpleScalarViewer, a NumberSpectrumViewer and
71 // a NumberImageViewer, since we already knew that we were

72 // playing with a scalar attribute, a number spectrum attribute
73 // and a number image attribute this time.

74 //

75 SimpleScalarViewer ssViewer = new SimpleScalarViewer();

76 NumberSpectrumViewer nSpectViewer = new NumberSpectrumViewer ();
77 NumberImageViewer nImageViewer = new NumberImageViewer ();
78 attributes.addErrorListener (errorHistory);

79 //

80 // The attribute (and command) list has the feature of returning,
—~the last

81 // attribute that was added to it. Just remember that it is_,
—returned as an

82 // IEntity object, so you need to cast it into a more specific,
—object, like

83 // IStringScalar, which is the interface which defines a string,
—scalar

84 //

85 try

86 {

87

88 ssAtt = (IStringScalar) attributes.add ("jlp/test/1l/att_

134 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

—cing");

89 nsAtt = (INumberSpectrum) attributes.add("jlp/test/1l/att_
—spectrum") ;

90 niAtt = (INumberImage) attributes.add("sr/d-ipc/id25-1n/
—Image");

91 }

92 catch (ConnectionException ce)

93 {

94 System.out.println("Error fetching one of the attributes
="+" "+ ce);

95 System.out .println ("Application Aborted.");

96 System.exit (0);

97 }

98 //

99 // Pay close attention to the following three lines!! This is,
—how it's done!
100 // This is how it's always done! The setModelsetModel method of
—any viewer takes care
101 // of connecting the viewer to the attribute (model) it's in_
—charge of displaying.
102 // This is the way to tell each viewer what (which attribute) it |
—has to show.
103 // Note that we use a viewer adapted to each type of attribute
104 //
105 ssViewer.setModel (ssAtt) ;
106 nSpectViewer.setModel (nsAtt);
107 nImageViewer.setModel (niAtt) ;
108 //
109 nSpectViewer.setPreferredSize (new java.awt.Dimension (400, 300));
110 nImageViewer.setPreferredSize (new java.awt.Dimension (500, 300));
111 Gradient g = new Gradient();
112 g.buidColorGradient () ;
113 g.setColorAt (0,Color.black);
114 nImageViewer.setGradient (g) ;
115 nImageViewer.setBestFit (true);
116
117 //
118 // Add the viewers into the frame to show them
119 //
120 getContentPane () .setLayout (new BorderLayout ());
121 getContentPane () .add (ssViewer, BorderLayout.SOUTH) ;
122 getContentPane () .add (nSpectViewer, BorderLayout.CENTER);
123 getContentPane () .add (nImageViewer, BorderLayout.EAST);
124 //
125 // To have the attributes values refreshed we should start the
126 // attribute list's refresher.
127 //
128 attributes.startRefresher();
129 //
130 // add the menubar to the frame
131 //
132 setJMenuBar (menu) ;
133 //
134 // JFrame stuff to make the thing show.

6.4. Tango Client 135

Tango Controls Documentation, Release 9.3.4

135 //

136 pack () ;

137 ATKGraphicsUtils.centerFrameOnScreen (this); //ATK utility to_
—center window

138 setVisible (true);

139 }

140 public static void main(String [] args)

141 {

142 new SecondApplication();

143 }

144 public void quitItemActionPerformed (ActionEvent evt)
145 {

146 System.exit (0);

147 }

148 public void errHistItemActionPerformed (ActionEvent evt)
149 {

150 errorHistory.setVisible (true);

151 }

152 }

This program (SeondApplication) should look something like this (depending on your platform and your device
attributes)

Eee

File | View |

1.0| Error History |

S P T o DU B P e gt
f—

Aol) I | I I

0.0 50.0 100.0 150.0 200.0 250.0
ilpttestit/att_spectrum (Y1) 100% [416,249] Selection [Mone |

Test string, read 32810 times.

Synoptic viewer

TangoATK provides a generic class to view and to animate the synoptics. The name of this class is
fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer. This class is based on a “home-made” graphical layer called jdraw.
The jdraw package is also included inside TangoATK distribution.

SynopticFileViewer is a sub-class of the class TangoSynopticHandler. All the work for connection to tango devices
and run time animation is done inside the TangoSynopticHandler.

The recipe for using the TangoATK synoptic viewer is the following

1. You use Jdraw graphical editor to draw your synoptic

136 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

During drawing phase don’t forget to associate parts of the drawing to tango attributes or commands. Use the
“name” in the property window to do this

During drawing phase you can also aasociate a class (frequently a “specific panel” class) which will be displayed
when the user clicks on some part of the drawing. Use the “extension” tab in the property window to do this.

Test the run-time behaviour of your synoptic. Use “Tango Synoptic view” command in the “views” pulldown
menu to do this.

Save the drawing file.

There is a simple synoptic application (SynopticAppli) which is provided ready to use. If this generic application
is enough for you, you can forget about the step 7.

You can now develop a specific TangoATK based application which instantiates the SynopticFileViewer. To
load the synoptic file in the SynopticFileViewer you have the choice : either you load it by giving the absolute
path name of the synoptic file or you load the synoptic file using Java input streams. The second solution is used
when the synoptic file is included inside the application jarfile.

The SynopticFilerViewer will browse the objects in the synoptic file at run time. It discovers if some parts of the
drawing is associated with an attribute or a command. In this case it will automatically connect to the corresponding
attribute or command. Once the connection is successful SynopticFileViewer will animate the synoptic according to
the default behaviour described below :

* For tango state attributes : the colour of the drawing object reflects the value of the state. A mouse click on the

drawing object associated with the tango state attribute will instantiate and display the class specified during the
drawing phase. If no class is specified the atkpanel generic device panel is displayed.

* For tango attributes : the current value of the attribute is displayed through the drawing object

¢ For tango commands : the mouse click on the drawing object associated with the command will launch the

device command.

* If the tooltip property is set to “name” when the mouse enters any tango object (attribute or command), inside

the synoptic drawing the name of the tango object is displayed in a tooltip.

The following example (ThirdApplication), is a Synoptic application. We assume that the synoptic has already been
drawn using Jdraw graphical editor.

1 package examples;

2 import java.io.x;

3 import java.util.sx;

4 import javax.swing.JFrame;

5 import Jjavax.swing.JMenultem;

6 import javax.swing.JMenuBar;

7 import javax.swing.JMenu;

8 import java.awt.event.ActionListener;

9 import java.awt.event.ActionEvent;

10 import Jjava.awt.BorderLayout;

11 import fr.esrf.tangoatk.widget.util.ErrorHistory;

12 import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;

13 import fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer;
14 import fr.esrf.tangoatk.widget. jdraw.TangoSynopticHandler;
15 public class ThirdApplication extends JFrame

16 {

17 JMenuBar menu;

18 ErrorHistory errorHistory; // A window that displays,,
—errors

19 SynopticFileViewer sfv; // TangoATK generic synoptic,,
—viewer

6.4. Tango Client 137

Tango Controls Documentation, Release 9.3.4

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

public ThirdApplication ()

{

// Swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar () ;

JMenu fileMenu = new JMenu();

fileMenu.setText ("File");

JMenu viewMenu = new JMenu () ;
viewMenu.setText ("View");
JMenultem quitItem = new JMenultem() ;

quitItem.setText ("Quit");
quitItem.addActionListener (new java.awt.event.ActionListener ()

{

public void,,

—actionPerformed (ActionEvent evt)

35 {quitItemActionPerformed (evt) ;}
36 1) i

37 fileMenu.add (quitItem) ;

38 JMenultem errorHistItem = new JMenultem();

39 errorHistItem.setText ("Error History");

40 errorHistItem.addActionListener (new java.awt.event.
—ActionListener ()

41 {

42 public void actionPerformed (ActionEvent evt)

43 {errHistItemActionPerformed (evt);}

44 1)

45 viewMenu.add (errorHistItem);

46 menu.add (fileMenu) ;

47 menu.add (viewMenu) ;

48 //

49 // Here we create TangoATK synoptic viewer and error window.
50 //

51 errorHistory = new ErrorHistory();

52 sfv = new SynopticFileViewer () ;

53 try

54 {

55 sfv.setErrorWindow (errorHistory) ;

56 }

57 catch (Exception setErrwExcept)

58 {

59 System.out.println ("Cannot set Error History Window");
60 }

61

62 //

63 // Here we define the name of the synoptic file to show and the_

—~tooltip mode to use

64
65
66
67
—Jjaw");
68
69

//
try
{
sfv.setJdrawFileName (" /users/poncet/ATK_OLD/jdraw_files/id1l4.

sfv.setToolTipMode (TangoSynopticHandler.TOOL_TIP_NAME) ;

138

Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

70 catch (FileNotFoundException fnfEx)

71 {

72 javax.swing.JOptionPane.showMessageDialog (

73 null, "Cannot find the synoptic file : idl4.]jdw.\n"
74 + "Check the file name you entered;"

75 + " Application will abort ...\n"

76 + fnfEx,

77 "No such file",

78 javax.swing.JOptionPane.ERROR_MESSAGE) ;
79 System.exit (-1);

80 }

81 catch (IllegalArgumentException 111Ex)

82 {

83 javax.swing.JOptionPane.showMessageDialog (

84 null, "Cannot parse the synoptic file : idl4.jdw.\n"
85 + "Check if the file is a Jdraw file."
86 + " Application will abort ...\n"

87 + 111Ex,

88 "Cannot parse the file",

89 javax.swing.JOptionPane.ERROR_MESSAGE) ;
90 System.exit (-1);

91 }

92 catch (MissingResourceException mrEx)

93 {

94 javax.swing.JOptionPane.showMessageDialog (

95 null, "Cannot parse the synoptic file : idl4.jdw.\n"
96 + " Application will abort ...\n"

97 + mrEx,

98 "Cannot parse the file",

99 javax.swing.JOptionPane.ERROR_MESSAGE) ;
100 System.exit (-1);
101 }
102 //
103 // Add the viewers into the frame to show them
104 //
105 getContentPane () .setLayout (new BorderLayout ());
106 getContentPane () .add(sfv, BorderLayout.CENTER) ;
107 //
108 // add the menubar to the frame
109 //
110 setJMenuBar (menu) ;
111 //
112 // JFrame stuff to make the thing show.
113 //
114 pack () ;
115 ATKGraphicsUtils.centerFrameOnScreen (this); //TangoATK utility,,
—~to center window
116 setVisible (true);
117 }
118 public static void main(String [] args)
119 {
120 new ThirdApplication();
121 }
122 public void quitItemActionPerformed (ActionEvent evt)

6.4. Tango Client 139

Tango Controls Documentation, Release 9.3.4

123 {

124 System.exit (0);

125 }

126 public void errHistItemActionPerformed (ActionEvent evt)
127 {

128 errorHistory.setVisible (true);

129 }

130 }

The synoptic application (ThirdApplication) should look something like this (depending on your synoptic drawing
file)

B

File \iew

EXP EH3

OPTICS HUTCH 1

Camera

id1 4/eh3_cryol
ryo

shit2 slit1

Aftenuators

AAAAAAAA
| | | e s s

ode v] v
8 Fin diode

' Screen
germanium

Seqguencer HODE Storage

"VVYVVYVYVYYY

Tahle movments

A short note on the relationship between models and viewers

As seen in the examples above, the connection between a model and its viewer is generally done by calling
setModel (model) on the viewer, it is never explained what happens behind the scenes when this is done.

Listeners

Most of the viewers implement some sort of listener interface, eg INumberScalarListener. An object implementing
such a listener interface has the capability of receiving and treating events from a model which emits events.

1 // this is the setModel of a SimpleScalarViewer

2 public void setModelsetModel (INumberScalar scalar) {

3

4 clearModel () ;

5

6 if (scalar !'= null) {

7 format = scalar.getProperty("format") .getPresentation();
8 numberModel = scalar;

9
10 // this 1s where the viewer connects itself to the
11 // model. After this the viewer will (hopefully) receive
12 // events through its numberScalarChange () method
13
14 numberModel .addNumberScalarListener (this);
15

140 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

16

17 numberModel .getProperty ("format") .addPresentationListener (this);
18 numberModel.getProperty ("unit") .addPresentationListener (this);
19 }

20

21 }

22

23

24

25 // Each time the model of this viewer (the numberscalar attribute)
—~decides it is time, it

26 // calls the numberScalarChange method of all its registered listeners
27 // with a NumberScalarEvent object which contains the

28 // the new value of the numberscalar attribute.

29 //

30

31 public void numberScalarChange (NumberScalarEvent evt) {

32 String val;

33 val = getDisplayString(evt);

34 if (unitvVisible) {

35 setText (val + " " + numberModel.getUnit());

36 } else {

37 setText (val);

38 }

39 }

All listeners in TangoATK implement the IErrorListener interface which specifies the
errorChange (ErrorEvent e) method. This means that all listeners are forced to handle errors in some
way or another.

The key objects of TangoATK

As seen from the examples above, the key objects of TangoATK are the CommandList and the AttributelList.
These two classes inherit from the abstract class AEnt ityList which implements all of the common functionality
between the two lists. These lists use the functionality of the CommandFactory, the AttributeFactory, which
both derive from AEntityFactory, and the DeviceFactory.

In addition to these factories and lists there is one (for the time being) other important functionality lurking around,
the refreshers.

The Refreshers

The refreshers, represented in TangoATK by the Refresher object, is simply a subclass of java.lang.Thread
which will sleep for a given amount of time and then call a method refresh on whatever kind of IRefreshee it has
been given as parameter, as shown below

// This is an example from DeviceFactory.
// We create a new Refresher with the name "device"
// We add ourself to it, and start the thread

Refresher refresher = new Refresher ("device");
refresher.addRefreshee (this) .start () ;

N o U W DN

6.4. Tango Client 141

Tango Controls Documentation, Release 9.3.4

Both the AttributelList and the DeviceFactory implement the IRefreshee interface which specify only
one method, refresh (), and can thus be refreshed by the Refresher. Even if the new release of TangoATK is
based on the Tango Events, the refresher mecanisme will not be removed. As a matter of fact, the method refresh()
implemented in AttributeList skips all attributes (members of the list) for which the subscribe to the tango event has
succeeded and calls the old refresh() method for the others (for which subscribe to tango events has failed).

In a first stage this will allow the TangoATK applications to mix the use of the old tango device servers (which do not
implement tango events) and the new ones in the same code. In other words, TangoATK subscribes for tango events if
possible otherwise TangoATK will refresh the attributes through the old refresher mecanisme.

Another reason for keeping the refresher is that the subscribe event can fail even for the attributes of the new Tango
device servers. As soon as the specified attribute is not polled the Tango events cannot be generated for that attribute.
Therefore the event subscription will fail. In this case the attribute will be refreshed thanks to the ATK attribute list
refresher.

The AttributePolledList class allows the application programmer to force explicitly the use of the refresher
method for all attributes added in an AttributePolledList even if the corresponding device servers implement tango
events. Some viewers (fr.esrf.tangoatk.widget.attribute. Trend) need an AttributePolledList in order to force the refresh
of the attribute without using tango events.

What happens on a refresh

When refresh is called on the AttributelList and the DeviceFactory, they loop through their objects,
IAttributes and IDevices, respectively, and ask them to refresh themselves if they are not event driven.

When AttributeFactory, creates an IAttribute, TangoATK tries to subscribe for Tango Change event for that
attribute. If the subscription succeeds then the attribute is marked as event driven. If the subscription for Tango
Change event fails, TangoATK tries to subscribe for Tango Periodic event. If the subscription succeeds then the
attribute is marked as event driven. If the subscription fails then the attribute is marked as to be * without events”.

In the refresh() method of the AttributeList during the loop through the objects if the object is marked event driven
then the object is simply skipped. But if the object (attribute) is not marked as event driven, the refresh() method of
the AttributeList, asks the object to refresh itself by calling the “refresh()” method of that object (attribute or device).
The refresh() method of an attribute will in turn call the “readAttribute” on the Tango device.

The result of this is that the TAttributes fire off events to their registered listeners containing snapshots of their
state. The events are fired either because the IAttribute has received a Tango Change event, respectively a Tango
Periodic event (event driven objects), or because the refresh() method of the object has issued a readAttribute on the
Tango device.

The DeviceFactory

The device factory is responsible for two things
1. Creating new devices (Tango device proxies) when needed
2. Refreshing the state and status of these devices

Regarding the first point, new devices are created when they are asked for and only if they have not already been
created. If a programmer asks for the same device twice, she is returned a reference to the same device-object.

The DeviceFactory contains a Refresher as described above, which makes sure that the all in the updates their
state and status and fire events to its listeners.

142 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

The AttributeFactory and the CommandFactory

These factories are responsible for taking a name of an attribute or command and returning an object representing
the attribute or command. It is also responsible for making sure that the appropriate IDevice is already available.
Normally the programmer does not want to use these factory classes directly. They are used by TangoATK classes
indirectly when the application programmer calls the AttributeList’s (or CommandList’s) add() method.

The AttributeList and the CommandList

These lists are containers for attributes and commands. They delegate the construction-work to the factories mentioned
above, and generally do not do much more, apart from containing refreshers, and thus being able to make the objects
they contain refresh their listeners.

The Attributes

The attributes come in several flavors. Tango supports the following types:
* Short
e Long
* Double
e String
* Unsigned Char
* Boolean
* Unsigned Short
* Float
* Unsigned Long
According to Tango specifications, all these types can be of the following formats:
e Scalar, a single value
* Spectrum, a single array
* Image, a two dimensional array

For the sake of simplicity, TangoATK has combined all the numeric types into one, presenting all of them as doubles.
So the TangoATK classes which handle the numeric attributes are : NumberScalar, NumberSpectrum and NumberIm-
age (Number can be short, long, double, float, ...).

The hierarchy

The numeric attribute hierarchy is expressed in the following interfaces:
INumberScalar extends INumber

INumberSpectrum extends INumber

INumberImage extends INumber

INumber in turn extends IAttribute

6.4. Tango Client 143

Tango Controls Documentation, Release 9.3.4

Each of these types emit their proper events and have their proper listeners. Please consult the javadoc for further
information.

The Commands

The commands in Tango are rather ugly beasts. There exists the following kinds of commands
* Those which take input
¢ Those which do not take input
* Those which do output
* Those which do not do output
Now, for both input and output we have the following types:
* Double
* Float
* Unsigned Long
* Long
* Unsigned Short
* Short
* String
These types can appear in scalar or array formats. In addition to this, there are also four other types of parameters:
1. Boolean
2. Unsigned Char Array
3. The StringLongArray
4. The StringDoubleArray

The last two types mentioned above are two-dimensional arrays containing a string array in the first dimension and a
long or double array in the second dimension, respectively.

As for the attributes, all numeric types have been converted into doubles, but there has been made little or no effort to
create an hierarchy of types for the commands.

Events and listeners

The commands publish results to their ITResultListeners, by the means of a ResultEvent. The
IResultListener extends IErrorListener, any viewer of command-results should also know how to handle
errors. So a viewer of command-results implements IResultListener interface and registers itself as a resultListener
for the command it has to show the results.

144 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

6.4.3 PyTango - a Python binding to Tango

Python is a commonly used programming language in the scientific community, due to its many advantages (the most
important of those is probably simplicity of its syntax). Tango Controls also supports it in a form of a Boost-based
binding to C++ Tango implementation.

In “pythonic” terms, it is a package available at PyPI that exposes the complete Tango API (both the client and the
server parts of it) as well as provides a framework for unit-testing your device servers.

Note: You should use PyTango that has major and minor version numbers the same as Tango C++ library that you
have. So if you have Tango C++ library version X.Y.Z, you should have PyTango version X.Y.V (where V might equal
Z, but its not required).

You can find its full documentation here.

6.5 Device Servers

Intended audience: developers, Programming language: all

6.5.1 Introduction to device server

Intended audience: developers, Programming language: all

Device servers were first developed at the European Synchrotron radiation Facility (ESRF) for controlling the 6 Gev
synchrotron radiation source. This document is a Programmer’s Manual on how to write TANGO device servers. It
will not go into the details of the ESRF, nor its Control System nor any of the specific device servers in the Control
System. The role of this document is to help programmers faced with the task of writing TANGO device servers.

Device servers have been developed at the ESRF in order to solve the main task of Control Systems viz provide read
and write access to all devices in a distributed system. The problem of distributed device access is only part of the
problem however. The other part of the problem is providing a programming framework for a large number of devices
programmed by a large number of programmers each having different levels of experience and style.

Device servers have been written at the ESRF for a large variety of different devices. Devices vary from serial line
devices to devices interfaced by field-bus to memory mapped VME cards or PC cards to entire data acquisition systems.
The definition of a device depends very much on the user’s requirements. In the simple case a device server can be
used to hide the serial line protocol required to communicate with a device. For more complicated devices the device
server can be used to hide the entire complexity of the device timing, configuration and acquisition cycle behind a set
of high level commands.

This section is organized as follows:

Throughout this section examples of source code will be given in order to illustrate what is meant. Most examples
have been taken from the StepperMotor class - a simulation of a stepper motor which illustrates how a typical device
server for a stepper motor at the ESRF functions.

6.5.2 TANGO Device Server Guidelines

Intended audience: developers, Programming language: all

Contents:

6.5. Device Servers 145

https://www.python.org/
https://pypi.python.org/pypi/PyTango
http://pytango.readthedocs.io/en/latest/

Tango Controls Documentation, Release 9.3.4

Guidelines

Intended audience: developers, Programming language: all

This chapter describes Guidelines for developing Device Servers. The purpose of this document is not to rewrite the
Tango documentation but to propose the community an interpretation of Tango device development. The Tango Device
Server Model is flexible and permits different interpretations of how to implement Device Servers. However there is
a right way of using Tango to implement device servers. This chapter documents the best practices from experienced
developers (some of them thee original developers of Tango) for device development.

Other ways of using Tango which do not follow these guidelines are possible and can be useful but they might run into
difficulties because Tango was not designed to be use that way. All developers should start off by first reading these
guidelines and then deciding if they want to ignore them or not. We strongly recommend you stick to them to make
your Device Classes easier to share and your Tango control system as efficient as possible.

To this aim the document is divided in 3 main chapters:
1. Tango concepts
2. DeviceServers design consideration

3. Implementation good practices

About this document

The document has been initiated within the collaborative framework between SOLEIL and MAX-IV to define common
software quality rules for shared software between these 2 institutes. It has since been adopted by the Tango community
and is maintained for and by the community.

The objectives are therefore to enhance the general software quality of Device Servers developed by the various sites
using Tango. This will also facilitate the reusability of developments between sites by allowing finding “reliable
off-the-shelves” Tango servers in public repositories.

Last but not least, this document can be freely distributed (under the Creative Commons license) to subcon-
tractors, students, etc.... Our hope is (as all writers) to have as many readers as possible!!

Note: Throughout the rest of the document, the issued recommendations are specified as below:

The recommendation is to ...

Note: Important note: The content of this document is generally independent of the programming language used.
However, there are some “C++ oriented” recommendations. For Java and Python refer to the relevant documentation
for language specific issues. In the future we hope to add guidelines for Java and Python too.

The present document refers to the Tango 8 or higher versions features.

Tango Concepts

The following explanations are from the 7ango Device Server Model .

146 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Tango Control system

The Tango control system is an abstract concept which represents a set of “microservices” based on a common tech-
nology: Tango. Tango is itself a control/command oriented specialization of CORBA/ZMQ. CORBA supports the
concept of software bus running over a network interconnected machines. It provides transparent access to any soft-
ware object (or microservice) connected to the bus and abstracts the notions of programming language (C++, Java,
Python. . .) and operating systems (Linux, Windows. ..) via a binary network protocol (based on CORBA and ZMQ).

Tango hides the complexity of the underlying protocols to the programmer, while adding specific control system
features (alarms, events, logging, data archiving. ..).

Device concept

The device is the core concept of Tango. This concept can be directly linked to the notion of microservice: 1 device =
1 microservice

A device can represent:
e An equipment (eg: a power supply),
* A set of equipments (eg: a set of 4 motors driven by the same controller),
* A set of software functions (eg: image processing),
* A group of devices representing a subsystem

The Tango Device allows making abstraction of the equipment’s nature: the device hides the implementation specific
details from the user who does not need to care about communication protocols etc. and provides the user with a
model which speaks their languages e.g. physical or engineering parameters.

Hierarchy

A Tango control system can be hierarchically organized.
At the lower level, we find elementary devices which are associated with equipments.
e e.g.: a vacuum pump, a motor, an I/O card

At higher levels, the devices are « logical ». These devices, based on the lower-level devices, manage and represent
a subset of the control system. This is usually a synthetic view of a set of equipments with a high-level steering
(functions can perform sequences of actions on several basic devices).

For example, a high-level device achieves “complex” features. This device is usually bound to evolve regardless of
the hardware. Therefore, it is necessary to separate and segregate responsibilities related to the logic functionality and
those related to hardware interfaces.

It is possible to access any other device from every device at every level.

The following diagram illustrates the concept of hierarchy of devices:

6.5. Device Servers 147

Tango Controls Documentation, Release 9.3.4

Figure (TANGO Software bus]
bus I —I— Process & calculation devices
TAN G O Device
Devices —— - - - 1= [~ ——===—=======
Equipment and subsystem devices

Hardware access devices

Fig. 2: The software bus view of devices

=

Device hierarchy for ds_BeamLineEnergyTempo 1!I14—C—C00|

it ds_BeamLineEnergyTempo1/114-¢

¢ @ 114-C-C00/EX/ BEAMLINEENERGY
¢ @ ans-cl4/eifc-u20_energy
¢ @ ans-cl4/eifc-u20 :
¢ @ //172.17.22.6:20000/ans-c14/eifc-u20-
& ans-cl14/eif c-u20-bli :
¢ @ il4-c-c02/op/mono
@ i14-c-c02/op/ mono-mt_rm.1
@ i14-c-c02/op/ mono-mt_tz.1
@ i14-c-c02/op/ mono-mt_rs.1
@ i1l4-c-c02jop/ mono-mt_r.l
@ i14-c-c02/viftcl
@ i14-c-c02/viftc2
@ dserver/ds_BeamLineEnergyTempol/114-C-C00

4| Il] D

L

Dismiss *

Fig. 3: Hierarchical view of devices

Communication paradigms

Tango offers three communication paradigm: synchronous, asynchronous and publish-subscribe calls.

In the synchronous and asynchronous paradigms the call is initiated by the client who contacts the server. The server
handles the client’s request and sends the answer to the client or throws an exception which the client catches. This
paradigm involves two network calls to receive a single answer and requires the client to be active in initiating the
request. The calls initiated by the client may be done by 2 mechanisms:

148 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Note:

1. the synchronous mechanism where the client waits (and is blocked) for the server to send the answer or until
the timeout is reached

2. the asynchronous mechanism where the clients send the request and immediately returns. It is not blocked. It is
free to do whatever it has to do like updating a graphical user interface. The client has the choice to retrieve the
server answer by checking if the reply is arrived by calling an API specific call or by requesting that a call-back
method is executed when the client receives the server answer.

If the client needs to know a value every time it changes or at regular intervals then he is obliged to poll the server for
an update in a value every time. This is not efficient in terms of network bandwidth nor in terms of client programming.
For this the publish-subscribe events communication is more efficient.

Note:

3. the publish-subscribe communication paradigm is a more efficient and natural way of programming. In this
paradigm the client registers his interest once in an event (value). An event can be a change in value, a regular
update at a fixed frequency or an archive event. After that the server informs the client every time an event has
occurred. This paradigm avoids the client polling, frees it for doing other things, is fast and makes efficient use
of the network.

Class, Device and Device Server
Reminders

Sometimes, there are misuses of language regarding the concepts of: device, device server and Tango class.
* DeviceClass class: a class defining the interface and state machine.
* Device class: a class implementing the device control.
» Device: An instance of a Device class giving access to the services of the DeviceClass class.

* Device Server: process in which one or more Tango classes are executed (device server).

Note: DeviceClass class is only used in C++ device classes

Hint: These four concepts are closely related, and they express very important concepts of Tango. Take time
to clearly understand them!

The diagrams below illustrate these concepts:

6.5. Device Servers 149

Tango Controls Documentation, Release 9.3.4

MotClass

dd/mot/1
b

) <X
(SR V-P 2] { ID4 MOT 1] I ID4 MOT 2 |

TANGO SOFTWARE BUS

TANGQ Client

Client

/

1 Caontrolled
T : l Equipment I
] ™ i

Caphon

Client

: P~ :
“ P Pmcessﬂ) Application

T

Tango Class

Device myfdevice/1

Fig. 4: Tango Deployment

A Device Server can host several Device classes, each class can be instantiated one or more times within the same
device server. There are no specific rules regarding the maximum number of classes or the maximum number of
instances operating within a single Device Server.

In particular cases, due to limitations imposed by the hardware or software interface, it is not always possible to run
several instances of a Device class within the same Device Server:

* Case of a DLL’s use: some DLLs can’t be used by two threads of the same process.
In other cases, it is useful to have multiple devices running in the same Device Server:

 *Case of motors: a single axis controller for 4 motors.

Device

Note: This is the basic entity of the control system. In the Tango world, everything is a device.

A Tango Device must be “self-consistent”. In case it represents a subset of the control system, it must enable the access
to all the associated features (unless otherwise specified). The limit of its “responsibilities”, meaning “separation of

150 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

concerns’, is clearly defined: 1 Device = 1 microservice = 1 element of the system. The analogy with object-oriented
programming is straightforward.

A Device is a microservice made available to any number of unspecified clients. Its implementation and/or behaviour
must not make assumptions about the nature and the number of its potential clients. In all cases, reactivity must
be ensured (i.e. the response time of the device, must be minimized).

A Device has an interface composed of commands and attributes, which provides the service of the device. It also has
properties, stored in the relational database, which are generally used as configuration settings. These concepts are
explained later in this document.

Device attributes
Purpose of an attribute

Attributes correspond to physical quantities carried by the device. Any value that you want available on the Tango bus
is an attribute. For example:

* A device associated with a motor has a position attribute expressed in mm.

* A device associated with a thermocouple has a temperature attribute expressed in Celsius (or any another
suitable unit).

Note: The main purpose of an attribute is to replace getters and setters.

» For example: the position of a motor will be obtained by reading the associated attribute (position) and not by
running a command like get_position.

* The data associated with the Tango attributes are the only values that can be archived. The Tango archiving
system (HDB/TDB) doesn’t have any functions to archive the result of a command. Similarly, some mechanisms
to store the experimental data (such as those implemented by the DataRecorder of SOLEIL) are only based on
attributes.

Attribute Properties

A Tango attribute has a group of settings that describe it.

These configuration parameters are called AttributeProperties. They can be considered as meta-data to enhance the
semantic and describe the data. They can be used by GUI clients for configuring their viewers in the best manner and
displaying extra information.

Those Attribute properties describe the attribute data and define some of its behaviour such as alarm limits, units etc. ..

The first set of Attribute Properties are static metadata. They describe the kind of data carried by the Tango Attribute.
The static metadata includes properties such as the name, the type, the dimension, if the attribute is writable or not.
These data are hardcoded, defined for the whole life of the attribute and cannot be modified.

The second set of Attribute Properties, are dynamic. They describe more precisely the meaning of the data and some
behaviour. They are used by GUI viewers to configure themselves. They can be modified at run time.

All these metadata are hosted in the class itself and can be set by the programmer or by a configuration in the Tango
database.

6.5. Device Servers 151

Tango Controls Documentation, Release 9.3.4

Static attribute Properties

* name: the attribute name
— Type: string e.g : OutCurrent, InCurrent. ..
* data_type: the attribute data type

— Identifier of the Tango numeric type associated to the attribute: DevBoolean, DevUChar, Dev[U][Short,
Dev[U]Long, Dev[U]Long64, DevFloat, DevDouble, DevString, DevEncoded

— Note: Tango::DevEncoded is the Tango type that encapsulates client data.
* data_format: describes the dimension of the data.
— Type: scalar (value), spectrum (1D array), image (2D array)

* writable: defines 4 possible types of access. In practical, we can say that only 2 are really useful and answer
to practically all the cases.

READ, The attribute can only be read (e.g. a temperature)

WRITE, The attribute can only be written (to be used only in very specific cases. the READ_WRITE is
generally more suitable for real cases)

READ_WRITE, The attribute can be written and read (the most common case) e.g. The current of a
powersupply, The position of an axis. ..

READ_WITH_WRITE (deprecated, do not use)

* max_dim_x: this property is valid only for data_format spectrum or image. It gives the maximum number of
element in the dimension X. e.g. the max length of a spectrum or the maximum number of rows of an image.
This property is used to reserve memory space to host the data. Nothing prevent to have a real length much
shorter that this maximum.

— e.g. 0 for a scalar, n for a spectrum of max n elements, n for an image of max n rows

* max_dim_y: this property is valid only for data_format image. It gives the maximum number of element in
the dimension Y. e.g. the maximum number of columns of an image. This property is used to reserve memory
space to host the data. Nothing prevent to have a real length much shorter that this maximum.

— 0 for a scalar or a spectrum, n for an image of max n columns
* display_level: enables to hide the attribute regarding the client mode (expert or not)

— Tango::OPERATOR or Tango::EXPERT

Warning: writable_attr_name: deprecated since version 8, do not use anymore

Modifiable attribute properties

These properties carries out information regarding the display of a value (they are editable while the device is running).
Those properties enhance the meaning of the attribute and should as much as possible be defined by the device server
programmer as default value when known. For instance, in the general case, the programmer knows the unit of the
data and is able to describe it. Feeling the attribute property at the development stage will allow all generic clients to
display the data in the best manner

* description: describes the attribute

— Type: string e.g. “The powersupply output current”

152 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

* label: label used on the GUIs
— Type: string e.g. “Output Current”, “Input Current”
* unit: attribute unit to be displayed in the client viewer
— Type: string (eg “mA”, “mm”...)

e standard_unit: conversion factor to get attribute value into S.I (M.K.S.A)_unit. Be careful this information
is intended to be used ONLY by the client (.e.g ATKPanel uses it, but jive->test device does not)

— Type: string interpreted as a floating point value E.g. If the device attribute gives the current in mA, we
have to divide by 1000 to obtain it in Amp. Then we will set this property to 1E-03

e display_unit: used by the GUIs to display the attribute into a unit more appropriate for the user. Be careful
this information is intended to be used ONLY by the client (e.g ATKPanel uses it, but JiveTest device does not).

— Type: string interpreted as a floating point value If the device attribute gives a current in mA. If we want
to display it in microA, then we have to multiply by 1000 to obtain it in microAmp. Then we will set this
property to 1000.0.

* format: specifies how a numeric attribute value should be presented
— Type: string : e.g. « %6.3f »
— Note: we use a “printf” like syntax

* min _value and max_value: minimum and maximum allowable value. These properties are automatically
checked at each execution of a write attribute. If the value requested is not between the min_value and the
max_value, an exception will be returned to the client.

— Type: string interpreted as a floating point value (e.g. 10.1, 1EO1, 0.12.)

— Note: these properties are valid only for writable attributes

Attributes properties for ALARM configuration

Tango provides an automatic way of defining alarms. An alarm condition will switch the attribute quality factor to
alarm and the device state will automatically switched to ALARM in certain conditions. Four properties are available
for alarm purpose.

* min_alarmand max_alarm: Define the range outside which the attribute is considered in alarm. If the value
of the attribute is > max_alarm or < min_alarm, then the attribute quality factor will be switched to ALARM.

e Delta_val and delta_t: (could also be called maximum noise and time constant) Valid for a writeable
attribute. Define a maximum difference between the set_value and the read_value of an attribute after a standard
time.

e.g. the voltage of a powersupply is set via a DAC and read via an ADC convertor. Both values
are different due to various factors such as internal resistor or noise on the ADC. Furthermore when
setting a voltage, the powersupply may need a certain time to establish its output voltage. The
delta_val property allows to define the limit of the acceptable difference between set and read values
(noise threshold) and delta_t defines the time the device needs to establish the voltage after the
writing of the setpoint (time constant). When writing a new value of the attribute, if the read value is
still not close enough from the set value after the time constant, the attribute quality factor will be set
to ALARM.

If these properties are not set, nothing is done. As soon as one of these properties is set, then the
attribute quality factor is automatically calculated at each read and is taken into account by the default
State attribute method. Device_Impl.dev_state(); The programmer should be aware of possible effect

6.5. Device Servers 153

Tango Controls Documentation, Release 9.3.4

of these mechanisms in the response time of the State method. (Refer to chapter 1.14 of the present
guide).

Warning: The behaviour described above is only correct in the case the device’s method
Tango::Device_[X]Impl::dev_state() is executed. In case of overwrite of the dev_state() in the device code, it
is recommended to finish the method by calling Devicelmpl::dev_state();

Warning: min_warning and max_warning : lower and upper bound for WARNING (deprecated since version
8)

Attributes properties related to Events configuration

These settings are used for tuning the events related to the attribute.
* Rel_change: relative change in the value in percent
* Abs_change: absolute change in the value in the standard unit.
* Period: period between two consecutive events
* Archive_rel_change: relative change in the value
* Archive_abs_change: absolute change in the value

* Archive_period: period between two consecutives events.

Particular case of a memorized attribute

Note: Memorised attributes are only possible with an attribute with WRITE or READ_WRITE mode and SCALAR
type

A memorized attribute can store its last written value in the database (i.e. the last setpoint received by the device for
this attribute can optionally persist into the Tango database).

The stored value will be reloaded into the set value associated with this attribute at device start-up and (optionally)
upon each execution of the “Init” command. The Tango code generator (Pogo) provides the interface allowing the
developer to select the expected behaviour.

Note: BE CAREFUL: this mechanism has the following behaviour:

» The writing of the memorized attributes is carried out after the function init_device, executed by the Tango
layer, and not by the Tango DeviceServer code. In case an error occurs during the init_device it cannot be
caught by the Tango DeviceServer programmer.

e Ifinthe init_device method an error occurs that causes a change of state in which the writing of an attribute
is impossible, this error will prohibit the restoration of the memorized value of the attribute.

* The order of reloading is deterministic but complex (order of ClassFactory then device definition in database
then attribute definition in Pogo). Therefore relying on this order might have some side effects particularly in
case attributes are modified through Pogo when attributes values are linked (eg: sampling frequency and number
of samples).

154 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Warning: Performance issues may happen in case the setpoint is written at high frequency, the static Tango
database is requested on each write of the memorized attribute. Since Tango 9 the database has been optimised for
memorised attributes and it should be possible to update memorised attributes at 10 Hz without taking a perfor-
mance hit.

Tip: If this standard Tango behaviour for reloading memorized values doesn’t fit your need, we recommend to code
the reloading of attribute values yourself. This is especially true for fast (> 10 Hz) feedback loops which can trigger
the writing of attributes at a high frequency.

Device commands

A command is associated with an action. On, Off, Start, Stop are commons examples.
A Tango command has, optionally, ONE input argument and ONE output argument.
The different types of data compatible for input and output are:
* void, boolean, short, long, long64, float, double, string, unsigned short, unsigned long, unsigned long64

e ID array of the followings types : char, short, long, long64, float, double, unsigned short, unsigned long,
unsigned long64, string

 State: enumeration, representing the different states described in the section on Device State.

e 2 particular types: longstringarray and doublestringarray. These are structures including one array of
long/double and one array of string.

The list of data types is fixed. If you need to add your own data type then use the DevEncoded type and encode your
own data type. Or you can use the DevPipe communication channel (avaliable since Tango 9).

For each command to implement, it is essential to generate exceptions depending on possible errors. The error handling
is described more in details below.

Device State

State transitions

Note: Every Tango device has a state implemented by finite state machine.

The device state is a key element in its integration into the control system. Therefore, you should be very careful in
the management of state transitions in the device implementation.

The device state must, at any time, reflect the internal state of the system it represents. The state should
represent any change made by a client’s request.

This is crucial information. Indeed, the “clients” will primarily, or only, use this information to determine the internal
state of a system.

The available states are limited to:

6.5. Device Servers 155

Tango Controls Documentation, Release 9.3.4

¢ ON, OFF, CLOSE, OPEN, INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING, ALARM,
DISABLE, UNKNOWN

The main thing is to ensure a predictable behaviour of the device regarding the state transitions.
For example:

* Consider the case of a motor system. The client knows the motor state (STANDBY, MOVING, FAULT,)*
with a polling mechanism (periodic reading of the state attribute of the motor — instead of using the Tango event
system).

In such cases, this can easily lead to inconsistent behaviour due to inappropriate management of the
state.

A typical example is to launch an axis movement through the writing of the position attribute then
the client is pending on the MOVING state (the motor is supposed to make a transition STANDBY
MOVING). Such a method will only work if the writing of the position attribute switches the device
state to MOVING before the return of the writing request of the position attribute. Otherwise, the client
can read (non-zero probability) the STANDBY state, and interpret it as “movement ended” while this
one had not even started!

This behaviour is described in figure 4 below.

Tip: The developer has to guarantee the clients the same behaviour regardless the type of state monitoring (polling
or events). This relates to the above rule: Do not make assumptions about the nature of the clients!

The state transitions and the “associated guarantees” must be documented. In the previous example, rereading the
STANDBY state after performing any movement must ensure that the required movement is completed (and not that
it has not yet been started!!).

156 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Client Device Server Mator
I WritePasition I |
L N| 1
I I WiitePositionMaoteur |
I L o
I I Motor starts maoving I
e |
I WritePosition end % i
_____________________ _ I
:"r ReadState I i
L N| 1
I State = STANDBY I |
NOK | SmessmmY i 1
I I |
I |
: I SetState MOVING j
I I Motor ends moving |
e e e it b, . .o, e, e . o d
I |Ei<_ 1
I |
: I Sat State STANDBEY i
Client Device Server Motor
| WritePosition I N
i o . - |
F -; WiitePositionMoteur 1
: ; Motor starts maving ']
[= —————— == |
| I |
I |
| I SelSlate MOVING 1
oK I) > I
I WrltaPosition end | 1
g Readse 1 }
| State = MOVING 1 i
F% _____________________ _: Mator ends moving]
[k- —-———-"—-—"—"—-——- —
| I |
I |
| D SetState STANDBY "
: ReadState I }
P Sme=STANDBY————————— ¥ I
t\; _____________________ - | |
Fig. 5: Example of State transitions
Properties
Concepts

By default Tango is based on a relational database (MySQL) to store configuration information for devices namely the

properties.

6.5. Device Servers

157

Tango Controls Documentation, Release 9.3.4

The properties are used to configure a device without changing the Tango class code. Taking an axis controller as
example, the controller must be configured for the motor mechanics according to the characteristics of the actuator
and the movements to achieve.

Configuration properties are available on different levels:

1. The device level: These are properties to configure the device itself and its attributes. The device properties
configure the device with the necessary set-up information during initialisation. Attribute properties are used to
configure alarms or specify the way the attribute value is displayed to the user (Label, Format, Unit...).

2. The class level: Device or attribute properties configured at the class level are valid for all instances of a class.
A property defined on the class level will be overwritten by a property of the same name on the device level.

3. Free properties: These are configuration values which are not attached to any device or class and can be freely
used by programmers.

Class level and device level properties are automatically loaded during device initialisation when starting-up a device
server or calling the “Init” command. The reading and writing of free properties must be handled by the programmer.

Configuration properties can have the following data types:
* boolean, short, long, float, double, unsigned short, unsigned long, string
e array of: short, long, float, double, string

On top of those basic concepts, device and class level properties can be initialised with default values which are
entered, for example, with Pogo at the interface creation time. Default values are stored in the device server code and
are overwritten when another value is found in the configuration database.

It is necessary to assign a default value for every property. This value will be used when the property is not defined in
the Tango database. If a default value for a device property does not make sense, the property should be declared as
mandatory. A mandatory property has to have a value configured in the Tango database. If no value is configured, the
device initialisation will stop with an exception on the missing property value.

Device property vs memorized attributes

In some cases, you could be tempted to use a property for a memorized attribute and vice-versa. It is important to
distinguish the function of each, and use them wisely.

* The use of a property must be limited to configuration data which value doesn’t change at runtime (the IP address
of equipment for example).

* The memorized attributes are reserved for physical quantities subject to change at runtime (attribute read/write)
for which you want to retain (store) the value from one execution to the other.

e.g. speed or acceleration on a motor.

Tip: In the case you want to manually manage the memorization of the attribute set points, you should use an attribute
property called __value (as natively done by Tango).

How to configure a new device

To set-up a new device you need to know about all the device properties and their values which must be configured to
make the device work. You need to have a description on the property which should indicate clearly its use. Also you
need to know about a specified default value.

158 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

When creating the device interface with Pogo a description and a default value can be entered for every device property.
This information is used by the device installation wizard (available with Jive) to guide you through the configuration.

When creating a new server start the wizard from the Tools menu -> Server Wizard. It allows you to create a new
device and to initialise it property by property. For every property the description is displayed and the default value
can be viewed. To use the wizard on an already existing device you can right click on the device and choose Device
Wizard. You will be guided again through all the properties of the device. At the end the device can be re-started when
necessary. Because the wizard is part of Jive, you can test the device configuration immediately.

Tango Device Design

Elements of general design
Reusability

In a Tango control system, each device is a software component potentially reusable.
It is necessary to:

» Systematically evaluate prior the coding of a device, the possibility of reusing a device available in the code
repositories (Tango community, local repository), in order to avoid several implementations of the same equip-
ment.

* Design the device as reusable/extensible as possible because it may interest the others developers in the com-
munity.

As such, the device must be:

* Configurable: (e.g.: no port number “hard coded”, but use of a parameter via a property),

* Self-supporting: the device must be usable outside the private programming environment (eg: all the neces-
sary elements to use the device (compile, link) must be provided to the community). The use of the GPL
should be considered, and the use of proprietary libraries should be avoided if possible

* Portable: the device code must be (as much as possible) independent of the target platform unless it depends
on platform specific drivers,

* Documentation in English

Generic interface programming

The device must be as generic as possible which means the definition of its interface should

 Reflect the service rather its underlying implementation. For example, a command named “WriteRead” reflects
the communication service of a bus (type: message exchange), while a command named NI488_Send reflects
a specific implementation of the supplier.

» Show the general characteristics (attributes and commands) of a common type of equipment that it represents.
For example, a command On reflects the action of powering on a PowerSupply , while a command named
BruckerP SON reflects a specific implementation which must be avoided.

The device interface must be service oriented, and not implementation oriented.

6.5. Device Servers 159

Tango Controls Documentation, Release 9.3.4

Abstract interfaces
Singleton device

Tango allows a device server to host several devices which are instantiations of the same Tango class.

However, in particular case some technical constraints may forbid it. In this case, the Device Server programmer must
anticipate it in the device design phase (add for example a static variable counting device instances or other) to detect
this misconfiguration. For example, it can authorize the creation of a second instance (within the meaning of the device
creation) but systematically put the state to FAULT (in the method init_device) and indicate the problem in the
Status.

In the case where technical constraints prohibit the deployment of multiple instances of a Tango device within the
same device server, the developer has to ensure that only one instance can be created and inform the user with a clear
message in case more than one device is configured in the database.

Device states

When designing the device, you should clearly define the state machine that will reflect the different states in which
the device can be, and also the associated transitions.

The state machine must follow these rules:
* At any time, the device state must reflect the internal state of the system it represents.
» The state should represent any change made by a client’s request.

* The device behaviour is specified and documented.

Device interface definition

The first step in designing a device is to define the commands and the attributes via Pogo (use Pogo to define the
Tango interface).

Except in (very) particular cases, always use an attribute to expose the data produced by the device. The command
concept exists (see Device Commands) but its use as an attribute substitute is prohibited. Example: a motor must be
moved writing its associated ‘position’ attribute instead of using a ‘GotoPosition’ command.

The choice will be made following these rules:

* Attribute: for all values to be presented to the “client”. It is imperative to use the attributes and to not use
Tango commands that would act like a get/set couple.

* Command: for every action, of void-void type in most cases.

Any deviation from these rules must be justified in the description of the attribute or command particular case.

Service availability

From the operator perspective, the “response time” or “reactivity” (i.e. the device is always responsive) is the
reference metric to describe the performance of a device. Ideally, the device implementation must ensure the service
availability regardless of the external client load or the internal load. For the end user, it is always very unpleasant to
suffer a Tango timeout and receive an exception instead of the expected response.

The response time of the device should be minimised and in any case lower than the default Tango timeout of 3
seconds.

160 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

If the action to be performed takes longer than that, execution should be done asynchronously in the Tango class: its
progress being reported in the state/status.

Several technical solutions are available to the device developer to ensure service availability:
* Use the Tango polling mechanism,

* Use a threading mechanism, managed by the developer.

Tango polling mechanism
Polling interest

The polling mechanism is detailed in the Tango documentation Device Polling.

Tango implements a mechanism called polling which alleviates the problem of equipment response time (which is
usually the weak point in terms of performance). The response time of a GPIB link or a RS-232 link is usually one to
two orders of magnitude higher than the performance of the Tango code executed by a client request.

Polling limitations

From the perspective of the device activity, the polling is in direct competition with client requests. The client load is
therefore competing with the polling activity.

This means that polling activity has to be tuned in order to keep some free time for the device to answer client requests.
Do not try to poll a device object with a polling period of let say 200 mS if the object access time is 300 mS (even if
Tango implements some algorithm to minimize the bad behavior of such badly tuned polling).

For polled Tango device objects (attribute or command), client reading does not generate any activity on the device
whatever the client number. The data are returned from the so-called polling buffer instead of coming from the device
itself. Therefore, an obvious rule is to poll the key device object (state attribute, pressure attribute for a vacuum
valve...)

The recommendation for device polling tuning is to keep the device free 40% of time.

Let’s take an example: for a power supply device, you want to poll the device state and its current attribute which for
such a device are the device key objects.

* State access needs 100 mS while current attribute reading needs 50 mS.

* Because, you want to poll these two objects, time required on the device by the polling mechanism will be 150
mS (100 + 50).

¢ In order to keep the 40% ratio, tune the polling period for this device to 250 mS.

* The device is then occupied by the polling mechanism during 150 mS (60 %) but free for other client activity
during 100 mS (40 %).

Device polling is easily tunable at run time using Jive and/or Astor Tango tools.

Threading mechanism

Threading is a possible solution for the load problem: a thread (managed by the device developer) supports communi-
cation with the material (polling or other) and the data obtained are put in the “cache”. You can now produce the “last
known value” to the client at any time and optimize the response time. This approach, however, has a limit where it is
necessary to reread the hardware to assure clients that the returned value is the system “current state”.

6.5. Device Servers 161

Tango Controls Documentation, Release 9.3.4

For a C++ device, the implementation of a threading mechanism can be done via the DeviceTask class from the
Yat4Tango library. This class owns a thread associated with a FIFO message list. Processing messages can be syn-
chronous or asynchronous.

See the complete example in the appendix for the implementation details.
When the design of the Tango class requires threading:
* in case of simple thread usage, in C++ the recommendation is to use a C++11 thread

e In case of acquisition thread with messages exchange in C++ the recommendation is to use
Yat4Tango::DeviceTask class.

Tango device implementation

General rules
Language

The Tango community is international and the developments could be shared with the community, so it is recom-
mended to use English for documenting a device development.

English will be used for:
¢ The interfaces definition (attributes and commands),
* The device documentation (online help for command usage and attributes description),
* The comments inserted in the code by the developer,
* The error messages,
* The name of variables and internal methods added by the developer.

The choice of the language used for the user’s documentation of the device server (“Device Server User’s Guide”) is
left free, to focus on the editorial quality. In the case of a joint development with another institute, English will be
used.

Types

The types used for the device interface definition are Tango types (Tango: :DevDouble, Tango: :DevFloat
...). These types are presented by Pogo and are not modifiable.

The types used by the developer in its own code are left free to choose, as long as they are not platform specific.
Standard types of the language used (Boolean, int, double ...), Tango types or types from a common library (Yat,
Yat4Tango for C++) can potentially be used.

Direct conversions from the C++ type long to Tango: : DevLong are only supported on 32-bit platforms and should
be avoided.

Generated code

The automatically generated code by Pogo must not be modified by the developer.
The developer must include its own code in the “PROTECTED REGION” specified parts.

162 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Device interface
Naming rules

Having homogeneous conventions for naming attributes, commands and properties is a good way to promote Device-
Servers reuse inside the Tango collaboration.

In fact it makes the development done by another institute easier to understand and integrate in another Control System.

Class name

The Tango class name is obtained by concatenating the fields that compose it — each field beginning with a capital
letter:

Eg: MyDeviceClass

Device attributes

The device command and attributes names must be explicit and should enable to quickly understand the nature of the
attribute or the command.

e Eg: for a power supply, you will have an attribute outputCurrent (not OCl) or a command
ActivateOutputl (not ActOl).

The nomenclature recommendations are in the section Naming Rules.

The attribute naming recommendations are:

» Name composed of at least two characters,
* Only alphanumeric characters are allowed (no underscore, no dashes),
 Start with a lowercase letter,

* In case of a composite name, each sub-words must be capitalized (except the first letter),

* Prohibit any use of vague terms (eg: readValue).

Device Commands

The recommendations are the same as those proposed for an attribute, except for the first letter of the name.

The command naming recommendations are:

» Name composed of at least two characters,
* Only alphanumeric characters are allowed (no underscore, no dashes),
 Start with a uppercase letter,

* In case of a composite name, each sub-words must be capitalized,

* Prohibit any use of vague terms (eg: Control).

6.5. Device Servers 163

Tango Controls Documentation, Release 9.3.4

Device properties

The recommendations are the same as those proposed for a command.

The property naming recommendations are:

* Name composed of at least two characters,
* Only alphanumeric characters are allowed (no underscore, no dashes),
 Start with a uppercase letter,

* In case of a composite name, each sub-words must be capitalized,

* Prohibit any use of vague terms (eg: Propl).

Device attributes nomenclature

It is a good practice that a particular signal type is always named in a similar way in various DeviceServers.

For example the intensity of a current should always be name intensity (and not “intens”, “intensity”,
“current”,’I” depending on the DeviceServers).

This allow the user to quickly make the link between the software information and the physical sensor and reciprocally.

Data types choice

Always use data types consistent with the underlying information
» Unsigned integer must be used for the physical quantities that are suitable.

— Eg: A number of samples numSamples, where negative values have no meaning, will be a
Tango::DevULong (unsigned integer 32 bits) and not a Tango::DevLong (signed integer 32 bits).

— Similarly, in such a case, the use of a floating point number is to be prohibited, non-integer values having
no meaning.

* This rule is applicable to input/output arguments of commands.

Interface level choice

The choice between the Expert or the Operator level for an interface must be thoughtful.

Only necessary and sufficient commands for a nominal control of the equipment must be accessible to the Operator
level. The commands for fine control of the equipment (eg: metrology, maintenance, unit test) must only be accessible
to the Expert level.

Pogo use
Device generation

The use of Pogo is mandatory for creating or modifying the device interface.

164 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Tango is constantly evolving, this tool will support all or part of the porting, associated to the kernel and their conse-
quences on the IDL interface.

In addition, it simplifies maintenance / development operations.

Every command, attribute, property or device state must be fully documented; this documentation is done via the Pogo
tool.

Specifically, when creating an attribute with Pogo, the entire configuration of the attribute must be fully filled in by
the developer (maximum possible) to avoid ambiguities.

Similarly, the states and their transitions must be described with precision and clarity.
In fact:

* In operation, this documentation will be the reference for understanding the device behaviour. Remember that
the operator will have this information with the generic tools (like Test Device from Jive).

* The html documentations generated by Pogo can also be accessed from a local server (peculiar to the institute).
* Consider also filling in the alarm values.

— Eg: set the alarm values according to the specifications of a power supply, ie, 0V-24V for the voltage, or
0A-3A for the output current.

Example for a temperature reading:

-,

W Edit Attribute Window

| Definition | Properties
Diefault Attribute Properties

Lahel Temperature
LInit "

Standard Unit
Display Linit
Display Format %637
ez, Value

Min. Walue
ez, Alarm 120
Min. Alarm -100
fl & Warning
Min Warning

Delta time

Delta value
Description :
Temperature read on a PT100 thermocouple channel

-

q| Il |]

OK Cancel

6.5. Device Servers 165

Tango Controls Documentation, Release 9.3.4

Attributes generation in C++

In C++, Pogo automatically generates pointers to the data associated with the attributes values (ie a pointer is gener-
ated for the read part). The use of these pointers is not mandatory. The developer is free to use his own data structure
in the attribute value affectation.

Internal device implementation
Separation between the Tango interface and the internal system function

Don’t forget that the Tango interface is only a means to insert a microservice in a control system. Therefore, it is
necessary to think the device internal design like any other application and just add the Tango as an interface on top of
it.

As a rule of thumb if the code implemented within the Pogo markers is too long, a good practice is to move it to
another class. Then Pogo generated methods will be only a few lines of code long.

In practice, it is necessary to avoid mixing the generated code by Pogo and the developer’s one.

The Tango sub-class inherited from Tango: :DeviceImpl [_X] instantiates a class derived from the model object
implementing the system, and ensure the replacement between the external requests (clients) and the implementation
class(es).

In the choice of data structures, we are talking about those of the developer’s object model, we will consider the
technical constraints imposed by Tango and/or the underlying layers (CORBA/ZMQ). The idea here is to avoid copy
and/or reorganization of the data when transferred to the client. For this, the developer needs to know/master the
underlying memory management mechanism (especially in C++). The Tango documentation contains a dedicated
chapter “Exchanging data between client and server”.

Details on method for accessing the hardware: always_executed_hook versus read_attr_hardware

It is essential to master the concepts implemented by these two methods (common methods for all Tango devices).

It is also necessary to clearly identify, in the design phase, the possible consequences of implementing these two
methods on the device behaviour (remember that they are initially just empty shells generated by Pogo).

* Always_executed_hook () method is called before each command execution or each reading/writing of
an attribute (but it is called only once when reading several attributes: see calling sequence below)

* Read_attr_hardware () is called before each reading of attribute(s)(but it is called only once when read-
ing several attributes: see calling sequence below). This method aims to optimize (minimize) the equipment
access in case of simultaneous reading of multiple attributes in the same request.

Reminder about the calling sequence of these methods:
* Command execution
— 1l —-always_executed_hook ()
- 2—-1is_MyCmd_allowed ()
- 3-MyCmd ()
e Attribute reading
- 1l -always_executed_hook ()

— 2—read_attr_hardware ()

166 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

- 3-1is_MyAttr_allowed()
- 4—read_MyAttr ()
* Attribute writing
- 1l -always_executed_hook ()
- 2—-1is_MyAttr_allowed()
- 3—-write_MyAttr ()
e Attributes reading
— 1l -always_executed_hook ()

— 2—read_attr_hardware ()

3-is_MyAttr_allowed()
- 4—-read_MyAttr ()
* Attributes writing
- 1l -always_executed_hook ()
- 2—-1is_MyAttr_allowed()
- 3—-write_MyAttr ()

When reading the sequence above, we understand why the mastery of these concepts is important. Particularly, having
“slow code” in the MyDevice: :always_executed_hook method can have serious consequences on the device
performance.

Warning: There is no obligation to use the read_attr_hardware method; it depends on the equipment to
drive and its communication channel (Ethernet, GPIB, DLL). You can have a call to the equipment in the code of
each attribute reading method.

Example: For an attribute “temperature”, of READ type, we can insert the call to the equipment in the
generated attribute reading method read_Temperature instead of read_attr_hardware.

Static database as persistent data storage

As noted above the Tango database can (in some cases) be used to ensure persistence of set values, to store the value
as a property (of device or attribute).

However, this practice should be reserved for special cases that don’t require writing at high frequency. An over-
solicitation of the Tango database will penalize the entire control system.

It is therefore recommended to use a property for storage only for methods that are performed rarely, compared to
other functions.

For example: storage of calibration operations results
In the general case, we recommend to:
» Use a property to store configuration data,
» Use a memorized attribute to store values changing during the execution,

» Use a memorized attribute to store values that you want to re-inject during a new execution of the device.

6.5. Device Servers 167

Tango Controls Documentation, Release 9.3.4

Device state management
States choice

In Tango, as already said, the state is seen as an enumerated type with a fix number of values. These states have an
implicit default meaning and are not equivalent. Furthermore a color code is associated to each state and is used in the
main GUI tools to have a unified manner of representing the state of equipment.

168 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

State Colour Meaning
ON green

This state could have been called
OK or OPERATIONAL. It means
that the

device is in its operational state.
(E.g. the powersupply is giving its
nominal current, the motor is ON
and ready to move, the instrument
is

operating). This state is modified
by the Attribute alarm checking of
the Devicelmpl:dev_state method.
i.e if the state is ON and one
attribute has it’s quality factor to
ALARM, then the state is modified
to ALARM

OFF white

The device is in normal condition
but is not active. e.g the

powersupply main circuit breaker is
open; the RF transmitter has no

power etc. ..

CLOSE white

Synonym of OFF state. Can be used
when OFF is not adequate for the
device e.g case of a valve, a door, a
relay, a switch.

OPEN green

Synonym of ON state. Can be used
when ON is not adequate for the
device

e.g case of a valve, a door, a relay, a
switch.

INSERT white

Synonym of OFF state. Can be used
when OFF is not adequate for the
device. Case of
insertable/extractable equipment,
absorbers, etc. . .

This state is here for compatibility
reason we recommend to use OFF
or

CLOSE when possible.

65X TPe\Vice Servers green 169

Synonym of ON state. Can be used
when ON is not adequate for the
device

Tango Controls Documentation, Release 9.3.4

Unless strictly specified, the developer is free to use the Tango state she considers appropriate to the situation, with all
the subjectivity involved.

The only practice that ensures overall consistency is to use a limited number of Tango states, especially for a family
of equipment.

It is recommended for an equipment of type motor, slit, monochromator and more generally for any equipment that
can change his position, to use the “MOVING” state when the equipment is in “movement” toward his set point.

Semantics of non-nominal states

Although the developer is free to choose the device states, we must define a common error state for all the devices.
In general, any dysfunction is associated with the state Tango: : FAULT.

The use of the Tango: : ALARM state should be reserved for very special cases where it is necessary to define an
intermediate state between normal operation and fault. Its use must be documented via Pogo in order to define the
semantics.

In the case of a problem occurring at initialization, it is recommended to set the device state to FAULT.
For the init_device method, we recommend:
* If the initialization method is long, thread it.
» The device state INIT must be used only in the start-up of the device.
The device states changes when the init execution is over.
Semantics recommended for FAULT and ALARM states is as follows:

* UNKNOWN (grey): communication problem with the equipment or the “sub”-devices which prevents the device
to really know his real state

e FAULT (red): A problem which prevents the normal functioning (including during the initialization). Get-
ting out from a FAULT state is possible only by repairing the cause of the problem and/or executing a Reset
command.

* ALARM (orange): the device is functional but one element is out of range (bad parameters but not preventing the
functioning, limit switch of a motor). An attribute is out of range.

State machine management
Pogo or developer code

Tango has a basic management of its state machine. Is_allowed methods filter the external request depending on
the current device state. The developer must define the device behaviour (regarding its internal state) via Pogo.

By default, any request (reading, writing, or command execution) is authorized whatever the current device state is.
The example below illustrates two ways for the state machine management of a device (here NITCO1) in C++:
* Managing the “On” command via Pogo

* Managing the reading of the attribute “temperature” directly in the code

170 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

NITC01 State Machine

Select Allowed
Commands ON OFF INIT
an Cl o o
Cff - o O
Select Allowed
Attributes ON OFF INIT
Temperature (Read) - il 1
0K Cancel
é'void NITCOl::read attr hardware (vector<long> &attr list)
{
DEEUG_STREAM << "MNITCO1l::read attr hardware (vector<long:> &attr_ list] entering... " << endl;
=] S F—— PROTECTED REGION IDGMITCOL::read attr hardware) ENABLED START ---—--— *f

o J4 0 bhdd your own code

int3Z read = 07

floated data[1000] ;
int32 returnCode = -1;
char errorString[1000] ;

f¢ Read only if state is CON or ALARM or WARNING

if ((Tango::CN == get_statei))] ||
(Tango: : ALARM == get_state()] |
(Tango: :WARN == get_state()] |

/4 Read temperature attribute
returncode = DAicmxReadinslogF64(taskHandle, -1, 10.0, DACmx Val GroupByScanMNuwber, data, 1000, &read, NULL);

However, the Pogo implementation is “basic”. If, for example, the execution of the On command on a power supply is
prohibited when the current state is Tango : : ON, then the Tango layer, generated by Pogo, will systematically trigger
an exception to the client. From the operator perspective, this may surprise.

In such a case, it is recommended to authorize the command but to ignore it.

Particular case : FAULT state

The Tango: : FAULT state shouldn’t prohibit everything. The attributes and/or commands that are valid and/or
allows the device to get out of the Tango::FAULT state must remain accessible.

For example, in some cases, when a device used several elementary devices, its state is a combination of the elementary
devices states. If one of them is in “FAULT”, we must be able to execute commands on others elementary devices,
and, in all cases, have a command to get out of this state.

6.5. Device Servers 171

Tango Controls Documentation, Release 9.3.4

The transition to a FAULT state needs reflection and a clear definition of the device management in this state and the
output conditions of this state.

Init and error acknowledgement

A common mistake is to associate the generic command MyDevice: : Init to an acknowledgement mechanism for
the current defect.

The execution of the Tnit command must be reserved to the device re-initialization (hardware reconnection after
a reboot or reconfiguration following a property modification).

Any device that requires an acknowledgement mechanism must have a dedicated command (like Reset or
AcknowledgeError).

Other implementations

You can also create a specific state machine, without using Tango types, in the interface class with the device. Thus,
we use this state machine to determine the Tango state of the device. The aims here is to define an internal state
machine (with a design pattern “state” for example) then do a mapping with the existing Tango states to determine the
device state.

The developer also has the ability to override the State and Status methods in order to centralize, in a unique
method, the management of the internal device state, which simplifies the update of this fundamental information.

Logging management
The importance of rigorous logging management

The introduction of logging in the device code enables easy development, bug research and the user understanding of
the device operations.

The device developer must always use the facilities offered by the Tango Logging Service to produce “Run-
time” messages, facilitating the understanding of the device operations. Implementations classes can inherit
Tango: :LogAdaptater to redirect the logs to the common service.

The rules to follow are:

* Logs to the console are prohibited. The developer must use the logging stream proposed by Tango (there is a
stream for every logging level, the levels being inclusive in the order specified below). : DEBUG _STREAM,
INFO_STREAM, WARN_STREAM, ERROR_STREAM, FATAL_STREAM

* It is important to use the right level of logging : on a higher level than DEBUG, the device should be a little
wordy. Beyond the INFO level, it should produce only critical logs.

Recommendations of use:
* DEBUG_STREAM : developer information (route trace)
e INFO_STREAM : user information (measure, start/stop of a process)
* WARN_STREAM : warning (eg deprecated operation)
* ERROR_STREAM : general error

e FATAL_STREAM : fatal error, shutdown

172 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

It is important to use these streams early in the development. They allow an easier debugging.

You shouldn’t have to modify the code to add traces.

* Eg: use a debug_stream level for the input parameters, the display of a conversion result, the return code from a
DLL function. ..

It is also recommended to adopt a unified formalism for logs, for example:
* “<class_name>::<method_name>() - <text trace with parameter (eventually)>"

Example of using different logs levels in C++:

é Tango: :DevLong MITCOl::on()

Tango: :Devlong argout;
DEBUG_STREAM << "NITCO1::Oni) - " << deviee_namwe << endl:
= JE—— PROTECTED REGION ID(MITCOLl::on) EMAELED 3TART ----- s/

r /¢ kdd your own code
char erroritring[1000];

Jf Create acguisition task
argout = DACmxCreateTask("", & tasklandle);

if (argout '= 0)

{
/¢ Error on creating acquisition task
set_state (Tango: :FAULT) ;
DaQmxGetErrorString (argout, errorstring, 1000) ;

set_status ("Error on creating acgquisition task - DiCmxCreateTask() : " + string({error3tring));
ERROR_STREAM << "NITCOl::on{) - Brror on creatling acguisition task for " << device_nawe << endl}
H
else
{
=] /4 Create scquisition channel

r f¢ Use channelilias property

argout = DigmxCreatelIThrmecplChan{ taskHandle, channelilias.c stri(), "Test", 0.0, 100.0, DiCmx Val DegC, DACmx_Val J Type TC,
DiQuy Vel BuiltIn, 25.0, ""); =

if (argout = 0)
{
/¢ Error on creating acquisition channel
set_state (Tango: :FAULT)
DackxGetError3cring (argout, error3tring, 1000);
get_status("Error on creating acquisition channel DACmxCreatelIThrmeplChan() @ " + string(errorscring))
ERROF_STREAM << "NITCO1l::onf} - error on creating acguisition channel for " << device name << endl;

else

Jf Gtart OK

set_state (Tango: :CN) ;

set_status("Acguisition in progress..."):

INFO_STREEAM << "NITCOLl::On() - Starc O for " << device name << endl;

It is also possible to redirect the stream to a file (via Jive). This can be useful in the case of “random” bugs, for which
a long log is required.

Implementation

It is not mandatory, but highly recommended to add an attribute named “log” in the device interface, strings spectrum
type, which tracks all the internal activity of the device (as defined in Tango Logging).

e InC++,theclass Yat4Tango: : InnerAppender implements this functionality based on a dynamic attribute
(no need to use Pogo).

» This system facilitates the recovery of errors and therefore the problems diagnosis. Problem solving will be
faster and optimized.

6.5. Device Servers 173

Tango Controls Documentation, Release 9.3.4

* This feature is in particular very interesting for devices that manage automatic processes (like doing scans,..)
which involve other devices. The operator has then an easy access through this “log” attribute to the behaviour
and decisions taken by the device.

Example of using C++ (look at the YAT documentation for further explanations:
In the header file of the device

¢ Declaration of the service to use
oy (2] — Software Engineering Group — ESRF

E #ifndef ATTRIEUTEIEQUENCEWRITER H
#define ATTRIEUTEZECUENCEWEITEE H

Hinclude <tango.h>

finclude <yatdtango/Innerlippender. h>
finclude <vat/memory/DataBuffer.hr
Sfusing nawespace Tango:

Hinclude "ittributelSequencelriterTask.h™

In the source code of the device
* init_device method: initialization of the “innerAppender”

* delete_device method: deletion of the “innerAppender”

H—]void Artributefequencelriter:iinit_device ()
{
/4= initialize the inner appender (first thing to do)
CEY
{
yatdtango: : InnerAppender::initialize (this, 51Z);
i
catch| Tango: :DevFaileds df)
{
ERROR_STREAN << df << std::iendl;
thig-»zet_state (Tango: :FAULT) ;
this-»set_status("initialization failed - could not instanciate the Innerippender™);
return;

174 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

I3

{

—wold Attributelequencelriter::delete devicel)

yvatdtango: :TraceHelper t("Attributelequencelriter: delete device', this);

fi— release the task
if (this->m_task)
{
ff— ask the task to quit
this-rm task-rexit(]:
Sé= 11l pewer try to <deleter a yvatdtango: :DeviceTask, cause
ff— it commits suicide upon return of its main function Pl
this-»m task = 0;

//- remove the inner appender
vatdtango: i Innerippender: irelease(this) ;

Error handling

The importance of rigorous error handling

The purpose of this paragraph is based on a statement on the Tango developers practice. Indeed, the error handling is
often overlooked. A good error handling means easier debugging and maintenance.

This part is important, it is essential for the coding quality. These concepts are detailed in the Tango documentation
referenced “Reporting Error”.

Typical cases to avoid:

A device doesn’t behave as expected but there is no indication why.

The device is in FAULT state but the Status (the attribute) gives no indication on the problem nature, or
worse, a bad indication (thus guiding the users in a wrong trail, with a loss of time and energy).

The error messages are written in the jargon of the developer or the system expert.

The developer has to ensure:

That any exception is caught, completed (Tango allows it) and spread (use of the rethrow_exception
method),

If an error occur it must be logged using the Tango Logging Service
That the return code of a function is always analyzed,
That the device Status is always coherent with the State,

That the error messages are understandable for the final user and that they are supplemented by logs (ERROR
level, use of the error_stream macro). The Status is the indicator that will help the user to find the error
reason.

Ignore the “ideal situation”: In operation, the ideal setting is often jeopardized.

— Eg: use of communication sockets: anticipate all the common communication problems: cable not con-
nected, equipment off, sub-devices not started or in FAULT.

6.5.

Device Servers 175

Tango Controls Documentation, Release 9.3.4

Implementation

On a more technical view, the Tango exceptions don’t provide numerical identifier for discriminating exceptions. In
the code, it isn’t possible to distinguish two exceptions without having knowledge of the text (as string) conveyed by
the said exception.

All exceptions are of type Tango: :DevFailed. A DevFailed exception consists of these fields:
* Reason: string, defining the error type
— Aim: refer the operator to the root cause
» Description: string, giving a more precise description
— Aim: refer the expert of this system to the root cause.
¢ Origin: string, method where the exception was thrown
— Aim : refer the computer scientist on the location of the failure in its code
 Severity: enumeration (rarely uses)

* To easily distinguish exceptions, it is recommended to use a finite list of error types for the Reason field, specify
in capital letters:

Standardized name for error types

Standardized name for the error types
OUT_OF_MEMORY
HARDWARE_FAILURE
SOFTWARE_FAILURE

HDB_FAILURE

DATA_OUT_OF_RANGE
COMMUNICATION_BROKEN
OPERATION_NOT_ALLOWED
DRIVER_FAILURE

UNKNOW_ERROR

CORBA_TIMEOUT

Tango_ CONNECTION_FAILED

Tango_ COMMUNICATION_ERROR

Tango_ WRONG_NAME_SYNTAX_ERROR
Tango_NON_DB_DEVICE_ERROR

Tango_ WRONG_DATA_ERROR
Tango_NON_SUPPORTED_FEATURE_ERROR
Tango_ ASYNC_CALL_ERROR
Tango_ASYNC_REPLY_NOT_ARRIVED_ERROR
Tango_ EVENT_ERROR
Tango_DEVICE_ERROR
CONFIGURATION_ERROR
DEPENDENCY_ERROR
NO_DEPENDENCY

Table 2 : List of standardized error types for an exception

Example of an exception message:

176 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Reason: DATA_OUT_OF_RANGE
Description: AxisMotionAccuracy must be at least of 1 motor step!
Origin: GalilAxis::write_attr_ hardware

The exception hierarchy defined by Tango has been thought only for internal use (Tango core), the developer can’t
inherit and define its own inherited exceptions classes. This strong constraint is related to the underlying CORBA
IDL.

Always keep the original exception. It must be the first visible item in the device status.

If there is a succession of exceptions, the logic dictates that the first exception has possibly generated all the others.
By resolving the first exception, the others can disappear.

Exception handling in init_device method:

* no exceptions should be propagated from the method MyDevice: :init_device. Otherwise, the device
quits. The device should be kept alive regardless of any failure.

* The code for this method must contain a try / catch block, which guarantees that no exception is propagated in
this context

« If an exception is thrown, the developer must set the device state to FAULT and update the Status to indicate
the error nature. (The goal is to understand easily why the device failed to initialize properly, while still allowing
the operator to adjust this or these problems)

Hint: Examples of error handling in C++:
* If an error occurs, always log it
* Always update State AND Status
* Manage the return code for function that have one

* Manage the exceptions for methods which can throw some

woid NITCO1l::read attr hardware (vector<long> &attr list)

{
DEEUG _STREAM << "NITCOLl::read attr hardware (vector<longs &attr list) entering... " << endl;
f FROTECTED REGICON ID(NITCOl::read attr hardware) ENAELED 3TART ----- *f

/¢ hdd your own code
int32 read = 0;
floatad data[1000] ;
int32 returnCode = -1;

char error3tring[l000] ;

| /¢4 Read only if state is ON or ALLAREM or WARNING

if ((Tango::ON == get_state(]] ||
(Tango: : ALARM == get_state(]) |
(Tango: :WARN == get_statei(]] |

/¢ Read temperature attribute
returncode = DACmxReadinalogFed [taskHandle, -1, 10.0, Digwx Val GroupByicanMNumber, dats, 1000, &read, NULL)

if (returnCode != 0)
{
/¢ Error on reading temperature
set_state (Tango: :FAULT) ;
_temperature read = numeric limits<doublex::infinity();

DAagmxGetError3tring (returnCods, errorZtring, 10007 ;
Zet_status("Error on reading temperature - DACmxReadinalogFad() : " + string({erroritring)]);
ERROR_STREAM << "MNITCOLl::read attr hardware(] - error on reading temperature for " << device name << endl;

6.5. Device Servers 177

Tango Controls Documentation, Release 9.3.4

Details for an attribute

Although Tango supports the notion of quality on an attribute value (Tango: : VALID, Tango: : INVALID, ...),
only few clients use this information to judge the validity of the data returned (which is a shame). So it is best to not
make assumptions on the use that would be made (client side) to report an invalid value to the client. In other words,
forcing the attribute quality to :samp:‘{Tango::INVALID} is necessary but not sufficient.

For float values, it is possible to set the value to “NaN”, but there is no equivalent for an integer. To avoid the handling
of special cases, it is recommended to throw an exception to indicate the data invalidity.

It is recommended to throw an exception for all invalid values, regardless of their type. There is, however, two
exceptions to this rule: State and Status. For these two attributes, always return a value.

This solution has the disadvantage to show a pop-up on the client side, but this is the most effective method to indicate
that the attribute reading has failed.

Details for the properties
Properties reading during device initialization

As it stands, the code generated by Pogo doesn’t wrap in a try / catch block the method which ensures the properties
reading in the Tango database (see MyDevice: :init_device). However, it may fail and cause the generation
of an exception. As mentioned above, the developer must ensure that any exception thrown in the init_device
method (or a method called from it) is catch and not spread.

In case of Tango exception on the properties reading, the developer should systematically:
1. detect the error (catch).
2. log it with level ERROR.
3. set the device to the FAULT state.
4. update the Status indicating the problem origin.

Example in C++ :

178 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

H—]void NITCO1::init_device ()
{
DEBUG_STREAM <« "NITCOLl::init_device(] create device " << device_name << endl;

/¢ Initimlization hefore get_device property() call

- /¢ Get the dewviece properties [(if any) fromw database
Lry
{
get_device propertyi);
i
catch (Tango::DevFailed &e=x)
i
set_state (Tango: :FAULT) ;
Zet_status ("Error on initializing device - get_deviee property() failed"):

return;
i
catch (...
{
Zet_state (Tango: :FAULT) ;
Zet_status ("Error on initializing device - unknown error™);

ERROR_STREAM << "NITCOLl::init_deviee(] - Error on getting device properties for " << device nawe << endl;

ERROR_STREAM << "NITCOLl::init_device(] - unknown error occured while initialising " << device name << endl;
FELuUrn;
b
[T] S FPROTECTED REGICH END ——-—--— L ff NITCO1l:: init_device before

As a reminder, the default value for a property is defined with Pogo, the value is stored in the database via the

put_property () method.

Properties without default values

Pogo allows defining a default value for a property not present in the Tango database.

For mandatory properties that have no default values, the developer should systematically:

detect the absence of the value in the database.

log the problem explicitly with the level ERROR (indicate the missing property).
* set the device to the FAULT state.

* update the Status indicating the problem origin.

Appendices

Appendix 1 — Full code samples

Example C++: AttributeSequenceWriter

6.5. Device Servers

179

http://www.tango-controls.org/developers/dsc/ds/1390/

Tango Controls Documentation, Release 9.3.4

6.5.3 The TANGO device server model

Intended audience: developers, Programming language: all

This chapter will present the TANGO device server object model hereafter referred as TDSOM. First, it will introduce
CORBA. Then, it will describe each of the basic features of the TDSOM and their function. The TDSOM can be
divided into the following basic elements - the device, the server, the database and the application programmers
interface. This chapter will treat each of the above elements separately.

Introduction to CORBA

CORBA is a definition of how to write object request brokers (ORB). The definition is managed by the Object Man-
agement Group (OMG home page). Various commercial and non-commercial implementations exist for CORBA for
all the mainstream operating systems. CORBA uses a programming language independent definition language (called
IDL) to defined network object interfaces. Language mappings are defined from IDL to the main programming lan-
guages e.g. C++, Java, C, COBOL, Smalltalk and ADA. Within an interface, CORBA defines two kinds of actions
available to the outside world. These actions are called attributes and operations.

Operations are all the actions offered by an interface. For instance, within an interface for a Thermostat class, op-
erations could be the action to read the temperature or to set the nominal temperature. An attribute defines a pair
of operations a client can call to send or receive a value. For instance, the position of a motor can be defined as an
attribute because it is a data that you only set or get. A read only attribute defines a single operation the client can call
to receives a value. In case of error, an operation is able to throw an exception to the client, attributes cannot raises
exception except system exception (du to network fault for instance).

Intuitively, IDL interface correspond to C++ classes and IDL operations correspond to C++ member functions and
attributes as a way to read/write public member variable. Nevertheless, IDL defines only the interface to an object and
say nothing about the object implementation. IDL is only a descriptive language. Once the interface is fully described
in the IDL language, a compiler (from IDL to C++, from IDL to Java...) generates code to implement this interface.
Obviously, you still have to write how operations are implemented.

The act of invoking an operation on an interface causes the ORB to send a message to the corresponding object
implementation. If the target object is in another address space, the ORB run time sends a remote procedure call to
the implementation. If the target object is in the same address space as the caller, the invocation is accomplished as an
ordinary function call to avoid the overhead of using a networking protocol.

For an excellent reference on CORBA with C++ refer to [Henning]. The complete TANGO IDL file can be found in
the TANGO home page or at the end of this document in the appendix 2 chapter.

The model

The basic idea of the TDSOM is to treat each device as an object. Each device is a separate entity which has its own
data and behavior. Each device has a unique name which identifies it in network name space. Devices are organized
according to classes, each device belonging to a class. All classes are derived from one root class thus allowing some
common behavior for all devices. Four kind of requests can be sent to a device (locally i.e. in the same process, or
remotely i.e. across the network) :

» Execute actions via commands

» Read/Set data specific to each device belonging to a class via TANGO attributes
» Read/Set data specific to each device belonging to a class via TANGO pipes

* Read some basic device data available for all devices via CORBA attributes.

» Execute a predefined set of actions available for every devices via CORBA operations

180 Chapter 6. Developer’s Guide

http://www.omg.org
http://www.tango-controls.org

Tango Controls Documentation, Release 9.3.4

Each device is stored in a process called a device server. Devices are configured at runtime via properties which are
stored in a database.

The device

The device is the heart of the TDSOM. A device is an abstract concept defined by the TDSOM. In reality, it can be
a piece of hardware (an interlock bit) a collection of hardware (a screen attached to a stepper motor) a logical device
(a taper) or a combination of all these (an accelerator). Each device has a unique name in the control system and
eventually one alias. Within Tango, a four field name space has been adopted consisting of

[//FACILITY/]IDOMAIN/CLASS/MEMBER

Facility refers to the control system instance, domain refers to the sub-system, class the class and member the instance
of the device. Device name alias(es) must also be unique within a control system. There is no predefined syntax for
device name alias.

Each device belongs to a class. The device class contains a complete description and implementation of the behavior
of all members of that class. New device classes can be constructed out of existing device classes. This way a new
hierarchy of classes can be built up in a short time. Device classes can use existing devices as sub-classes or as sub-
objects. The practice of reusing existing classes is classical for Object Oriented Programming and is one of its main
advantages.

All device classes are derived from the same class (the device root class) and implement the same CORBA interface.
All devices implementing the same CORBA interface ensures all control object support the same set of CORBA
operations and attributes. The device root class contains part of the common device code. By inheriting from this
class, all devices shared a common behavior. This also makes maintenance and improvements to the TDSOM easy to

carry out.

All devices also support a black box where client requests for attributes or operations are recorded. This feature allows
easier debugging session for device already installed in a running control system.

The commands

Each device class implements a list of commands. Commands are very important because they are the client’s major
dials and knobs for controlling a device. Commands have a fixed calling syntax - consisting of one input argument
and one output argument. Arguments type must be chosen in a fixed set of data types: All simple types (boolean,
short, long (32 bits), long (64 bits), float, double, unsigned short, unsigned long (32 bits), unsigned long (64 bits)
and string) and arrays of simple types plus array of strings and longs and array of strings and doubles). Commands
can execute any sequence of actions. Commands can be executed synchronously (the requester is blocked until the
command ended) or asynchronously (the requester send the request and is called back when the command ended).

Commands are executed using two CORBA operations named command_inout for synchronous commands and com-
mand_inout_async for asynchronous commands. These two operations called a special method implemented in the
device root class - the command_handler method. The command_handler calls an is_allowed method implemented
in the device class before calling the command itself. The is_allowed method is specific to each command'. It checks
to see whether the command to be executed is compatible with the present device state. The command function is
executed only if the is_allowed method allows it. Otherwise, an exception is sent to the client.

The TANGO attributes

In addition to commands, TANGO devices also support normalized data types called attributes>. Commands are
device specific and the data they transport are not normalized i.e. they can be any one of the TANGO data types with

! In contrary to the state_handler method of the TACO device server model which is not specific to each command.
2 TANGO attributes were known as signals in the TACO device server model

6.5. Device Servers 181

Tango Controls Documentation, Release 9.3.4

no restriction on what each byte means. This means that it is difficult to interpret the output of a command in terms of
what kind of value(s) it represents. Generic display programs need to know what the data returned represents, in what
units it is, plus additional information like minimum, maximum, quality etc. Tango attributes solve this problem.

TANGO attributes are zero, one or two dimensional data which have a fix set of properties e.g. quality, minimum
and maximum, alarm low and high. They are transferred in a specialized TANGO type and can be read, write or
read-write. A device can support a list of attributes. Clients can read one or more attributes from one or more
devices. To read TANGO attributes, the client uses the read_attributes operation. To write TANGO attributes, a
client uses the write_attributes operation. To write then read TANGO attributes within the same network request,
the client uses the write_read_attributes operation. To query a device for all the attributes it supports, a client uses
the get_attribute_config operation. A client is also able to modify some of parameters defining an attribute with the
set_attribute_config operation. These five operations are defined in the device CORBA interface.

TANGO support thirteen data types for attributes (and arrays of for one or two dimensional data) which are: boolean,
short, long (32 bits), long (64 bits), float, double, unsigned char, unsigned short, unsigned long (32 bits), unsigned
long (64 bits), string, a specific data type for Tango device state and finally another specific data type to transfer data
as an array of unsigned char with a string describing the coding of these data.

The TANGO pipes

Since release 9, in addition to commands and attributes, TANGO devices also support pipes.

In some cases, it is required to exchange data between client and device of varrying data type. This is for instance
the case of data gathered during a scan on one experiment. Because the number of actuators and sensors involved in
the scan may change from one scan to another, it is not possible to use a well defined data type. TANGO pipes have
been designed for such cases. A TANGO pipe is basically a pipe dedicated to transfer data between client and device.
A pipe has a set of two properties which are the pipe label and its description. A pipe can be read or read-write. A
device can support a list of pipes. Clients can read one or more pipes from one or more devices. To read a TANGO
pipe, the client uses the read_pipe operation. To write a TANGO pipe, a client uses the write_pipe operation. To
write then read a TANGO pipe within the same network request, the client uses the write_read_pipe operation. To
query a device for all the pipes it supports, a client uses the get_pipe_config operation. A client is also able to modify
some of parameters defining a pipe with the set_pipe_config operation. These five operations are defined in the device
CORBA interface.

In contrary of commands or attributes, a TANGO pipe does not have a pre-defined data type. Data transferred through
pipes may be of any basic Tango data type (or array of) and this may change every time a pipe is read or written.

Command, attributes or pipes ?

There are no strict rules concerning what should be returned as command result and what should be implemented
as an attribute or as a pipe. Nevertheless, attributes are more adapted to return physical value which have a kind of
time consistency. Attribute also have more properties which help the client to precisely know what it represents. For
instance, the state and the status of a power supply are not physical values and are returned as command result. The
current generated by the power supply is a physical value and is implemented as an attribute. The attribute properties
allow a client to know its unit, its label and some other informations which are related to a physical value. Command
are well adapted to send order to a device like switching from one mode of operation to another mode of operation.
For a power supply, the switch from a STANDBY mode to a ON mode is typically done via a command. Finally pipe
is well adapted when the kind and number of data exchanged between the client and the device change with time.

The CORBA attributes

Some key data implemented for each device can be read without the need to call a command or read an attribute. These
data are :

182 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

* The device state

» The device status

¢ The device name

¢ The administration device name called adm_name
* The device description

The device state is a number representing its state. A set of predefined states are defined in the TDSOM. The device
status is a string describing in plain text the device state and any additional useful information of the device as a
formatted ascii string. The device name is its name as defined in [sec:dev]. For each set of devices grouped within
the same server, an administration device is automatically added. This adm_name is the name of the administration
device. The device description is also an ascii string describing the device rule.

These five CORBA attributes are implemented in the device root class and therefore do not need any coding from
the device class programmer. As explained in [sec:corba], the CORBA attributes are not allowed to raise exceptions
whereas command (which are implemented using CORBA operations) can.

The remaining CORBA operations

The TDSOM also supports a list of actions defined as CORBA operations in the device interface and implemented
in the device root class. Therefore, these actions are implemented automatically for every TANGO device. These
operations are :

ping to ping a device to check if the device is alive. Obviously, it checks only the connection from a
client to the device and not all the device functionalities

com- request a list of all the commands supported by a device with their input and output types and
mand_list_querydescription

com- request information about a specific command which are its input and output type and description
mand_query

info request general information on the device like its name, the host where the device server hosting
the device is running. . .

black_box read the device black-box as an array of strings

The special case of the device state and status

Device state and status are the most important key device informations. Nearly all client software dealing with Tango
device needs device(s) state and/or status. In order to simplify client software developper work, it is possible to get
these two piece of information in three different manners :

1. Using the appropriate CORBA attribute (state or status)
2. Using command on the device. The command are called State or Status

3. Using attribute. Even if the state and status are not real attribute, it is possible to get their value using the
read_attributes operation. Nevertheless, it is not possible to set the attribute configuration for state and status.
An error is reported by the server if a client try to do so.

6.5. Device Servers 183

Tango Controls Documentation, Release 9.3.4

The device polling

Within the Tango framework, it is also possible to force executing command(s) or reading attribute(s) at a fixed
frequency. It is called device polling. This is automatically handled by Tango core software with a polling threads
pool. The command result or attribute value are stored in circular buffers. When a client want to read attribute value
(or command result) for a polled attribute (or a polled command), he has the choice to get the attribute value (or
command result) with a real access to the device of from the last value stored in the device ring buffer. This is a
great advantage for “slow” devices. Getting data from the buffer is much faster than accessing the device itself. The
technical disadvantage is the time shift between the data returned from the polling buffer and the time of the request.
Polling a command is only possible for command without input arguments. It is not possible to poll a device pipe.

Two other CORBA operations called command_inout_history_X and read_attribute _history_X allow a client to re-
trieve the history of polled command or attribute stored in the polling buffers. Obviously, this history is limited to the
depth of the polling buffer.

The whole polling system is available only since Tango release 2.x and above in CPP and since TangORB release 3.7.x
and above in Java.

The server

Another integral part of the TDSOM is the server concept. The server (also referred as device server) is a process
whose main task is to offer one or more services to one or more clients. To do this, the server has to spend most of its
time in a wait loop waiting for clients to connect to it. The devices are hosted in the server process. A server is able to
host several classes of devices. In the TDSOM, a device of the DServer class is automatically hosted by each device
server. This class of device supports commands which enable remote device server process administration.

TANGO supports device server process on two families of operating system : Linux and Windows.

The Tango Logging Service

During software life, it is always convenient to print miscellaneous informations which help to:
* Debug the software
e Report on error
* Give regular information to user

This is classically done using cout (or C printf) in C++ or println method in Java language. In a highly
distributed control system, it is difficult to get all these informations coming from a high number of different processes
running on a large number of computers. Since its release 3, Tango has incorporated a Logging Service called the
Tango Logging Service (TLS) which allows print messages to be:

* Displayed on a console (the classical way)
* Sent to afile

* Sent to specific Tango device called log consumer. Tango package has an implementation of log consumer where
every consumer device is associated to a graphical interface. This graphical interface display messages but could
also be used to sort messages, to filter messages. .. Using this feature, it is possible to centralise display of these
messages coming from different devices embedded within different processes. These log consumers can be:

— Statically configured meaning that it memorizes the list of Tango devices for which it will get and display
messages.

— Dynamically configured. The user, with the help of the graphical interface, chooses devices from which
he want to see messages.

184 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

The database

To achieve complete device independence, it is necessary however to supplement device classes with a possibility for
configuring device dependencies at runtime. The utility which does this in the TDSOM is the property database.
Properties® are identified by an ascii string and the device name. TANGO attributes are also configured using proper-
ties. This database is also used to store device network addresses (CORBA IOR’s), list of classes hosted by a device
server process and list of devices for each class in a device server process. The database ensure the uniqueness of
device name and of alias. It also links device name and it list of aliases.

TANGO uses MySQL (MySQL home page) as its database. MySQL is a relational database which implements the
SQL language. However, this is largely enough to implement all the functionalities needed by the TDSOM. The
database is accessed via a classical TANGO device hosted in a device server. Therefore, client access the database via
TANGO commands requested on the database device. For a good reference on MySQL refer to [MySQLbook].

The controlled access

Tango also provides a controlled access system. It’s a simple controlled access system. It does not provide encrypted
communication or sophisticated authentification. It simply defines which user (based on computer loggin authentifica-
tion) is allowed to do which command (or write attribute) on which device and from which host. The information used
to configure this controlled access feature are stored in the Tango database and accessed by a specific Tango device
server which is not the classsical Tango database device server described in the previous section. Two access levels
are defined:

* Everything is allowed for this user from this host

* The write-like calls on the device are forbidden and according to configuration, a command subset is also
forbidden for this user from this host

This feature is precisely described in the chapter Advanced features

The Application Programmers Interfaces

Rules of the API

While it is true TANGO clients can be programmed using only the CORBA API, CORBA knows nothing about
TANGO. This means client have to know all the details of retrieving IORs from the TANGO database, additional
information to send on the wire, TANGO version control etc. These details can and should be wrapped in TANGO
Application Programmer Interface (API). The API is implemented as a library in C++ and as a package in Java. The
API is what makes TANGO clients easy to write. The API’s consists the following basic classes :

* DeviceProxy which is a proxy to the real device

* DeviceData to encapsulate data send/receive from/to device via commands
 DeviceAttribute to encapsulate data send/receive from/to device via attributes
* Group which is a proxy to a group of devices

In addition to these main classes, many other classes allows a full interface to TANGO features. The following figure
is a drawing of a typical client/server application using TANGO.

The database is used during server and client startup phase to establish connection between client and server.

3 Properties were known as resources in the TACO device server model

6.5. Device Servers 185

http://www.mysql.com

Tango Controls Documentation, Release 9.3.4

Communication between client and server using the API

With the API, it is possible to request command to be executed on a device or to read/write device attribute(s) using
one of the two communication models implemented. These two models are:

1. The synchronous model where client waits (and is blocked) for the server to send the answer or until the timeout
is reached

2. The asynchronous model. In this model, the clients send the request and immediately returns. It is not blocked.
It is free to do whatever it has to do like updating a graphical user interface. The client has the choice to retrieve
the server answer by checking if the reply is arrived by calling an API specific call or by requesting that a
call-back method is executed when the client receives the server answer.

The asynchronous model is available with Tango release 3 and above.

Tango events

On top of the two communication model previously described, TANGO offers an event system. The standard TANGO
communication paradigm is a synchronou/asynchronous two-way call. In this paradigm the call is initiated by the
client who contacts the server. The server handles the client’s request and sends the answer to the client or throws
an exception which the client catches. This paradigm involves two calls to receive a single answer and requires the
client to be active in initiating the request. If the client has a permanent interest in a value he is obliged to poll the
server for an update in a value every time. This is not efficient in terms of network bandwidth nor in terms of client
programming.

For clients who are permanently interested in values the event-driven communication paradigm is a more efficient and
natural way of programming. In this paradigm the client registers his interest once in an event (value). After that the
server informs the client every time the event has occurred. This paradigm avoids the client polling, frees it for doing
other things, is fast and makes efficient use of the network.

Before TANGO release 8, TANGO used the CORBA OMG COS Notification Service to generates events. TANGO
uses the omniNotify implementation of the Notification service. omniNotify was developed in conjunction with the
omniORB CORBA implementation also used by TANGO. The heart of the Notification Service is the notification
daemon. The omniNotify daemons are the processes which receive events from device servers and distribute them
to all clients which are subscribed. In order to distribute the load of the events there is one notification daemon per
host. Servers send their events to the daemon on the local host. Clients and servers get the IOR for the host from the
TANGO database.

The following figure is a schematic of the Tango event system for Tango releases before Tango 8.

186 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Schematic of TANGO Events system

event subscription

event filter

‘ device server #1
client #1
event channel
. event(s) notify daemon
client event channe
J
Svent(s) device server #2
_ IOR
client #3

database server events table:

notifd/host: IOR
server/name: [OR

Starting with Tango 8, a new design of the event system has been implemented. This new design is based on the
ZMQ library. ZMQ is a library allowing users to create communicating system. It implements several well known
communication pattern including the Publish/Subscribe pattern which is the basic of the new Tango event system.
Using this library, a separate notification service is not needed anymore and event communiction is available with
only client and server processes which simplifies the overall design. Starting with Tango 8.1, the event propagation
between devices and clients could be done using a multicasting protocol. The aim of this is to reduce both the network

bandwidth use and the CPU consumption on the device server side. See chapter on Advanced Features to get all the
details on this feature.

The following figure is a schematic of the Tango event system for Tango releases starting with Tango release 8.

6.5. Device Servers 187

Tango Controls Documentation, Release 9.3.4

Schematic of event system for TANGO release 8 and more

Client #1

Event(s)

Device
server #1

Event(s)

Client #2

Device
server #2

Client #3

Event(s)

188

Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

6.5.4 Writing a TANGO device server

Intended audience: developers, Programming language: c++

The device server framework

This chapter will present the TANGO device server framework. It will introduce what is the device server pattern and
then it will describe a complete device server framework. A definition of classes used by the device server framework
is given in this chapter. This manual is not intended to give the complete and detailed description of classes data
member or methods, refer to [TangoRefMan] to get this full description. But first, the naming convention used in this
project is detailed.

The aim of the class definition given in this chapter is only to help the reader to understand how a TANGO device
server works. For a detailed description of these classes (and their methods), refer to chapter [Writing_chapter] or to
[TangoRefMan].

Naming convention and programming language

TANGO fully supports three different programming languages which are C++, Java and Python. This documentation
focuses on C++ Tango class. For Java and Python Tango class, have a look at the [TangoRefMan] pages where similar
chapter for Java and Python are available.

Every software project needs a naming convention. The naming convention adopted for the TDSOM is very simple
and only defines two guidelines which are:

¢ Class names start with uppercase and use capitalization for compound words (For instance MyClassName).

* Method names are in lowercase and use underscores for compound words (For instance my_method_name).

The device pattern

Device server are written using the Device pattern. The aim of this pattern is to provide the control programmer with
a framework in which s/he can develop new control objects. The device pattern uses other design patterns like the
Singleton and Command patterns. These patterns are fully described in [Patterns]. The device pattern class diagram
for stepper motor device is drawn in figure 6./

6.5. Device Servers 189

Tango Controls Documentation, Release 9.3.4

CORBA cl asses

DbClass Devi celnpl
1,.n init_device()=0

get_property() | attribute factory()
put_prperty() command_factory() ’_1 DbDevice

dev_state

get_property()
% put_property()
Devi ced ass St pper Mot or in
. . Att
device_factory()=0 : i nit_device() o
{> conmand_factory() =0 dev_read_position() : is_allowed()
< > read()
SALELEL S |
StepperMtord ass | Commnd PositionAttr SetPositionAttr
devi ce_factory() || fs-allowed()=0 is_all oved() is_all oved()
command_f actory() execute()=0 read() read()
DevState DevStatus DevRestart : DevReadPosi tion TemplCommand
is_al l oned() is_alloved() is_alloved() is_allowed() is_allowed()
execute() execute() execute() : execute() execute()
TemplCommandIn TemplCommandOut TemplCommandInOut
is_allowed() is_all owed() is_allowed()
execute() execute() execute()

Attribute MultiAttribute

set_value() 1,.n get_attr....() 1

get_name() check_alarm()

read_alarm()
WAttribute
get_write_value()

Fig. 6: Figure 6.1: Device pattern class diagram

. In this figure, only classes surrounded with a dash line square are device specific. All the other classes are part of the
TDSOM core and are developed by the Tango system team. Different kind of classes are used by the device pattern.

» Three of them are root classes and it is only necessary to inherit from them. These classes are the DeviceImpl,
DeviceClass and Command classes.

¢ Classes necessary to implement commands. The TDSOM supports two ways to create command : Using inher-

190 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

itance or using the template command model. It is possible to mix model within the same device pattern

1. Using inheritance. This model of creating command heavily used the polymorphism offered by each
modern object oriented programming language. In this schema, each command supported by a device
via the command_inout or command_inout_async operation is implemented by a separate class. The
Command class is the root class for each of these classes. It is an abstract class. A execute method must
be defined in each sub-class. A is_allowed method may also be re-defined in each class if the default one
does not fulfill all the needs'. In our stepper motor device server example, the DevReadPosition command
follows this model.

2. Using the template command model. Using this model, it is not necessary to write one class for each
command. You create one instance of classes already defined in the TDSOM for each command. The link
between command name and method which need to be executed is done through pointers to method. To
support different kind of command, four classes are part of the TDSOM. These classes are :

1. The TemplCommand class for command without input or output parameter

2. The TemplCommandIn class for command with input parameter but without output parameter
3. The TemplCommandOut class for command with output parameter but without input parameter
4. The TemplCommandInOut class for all the remaining commands

¢ Classes necessary to implement TANGO device attributes. All these classes are part of the TANGO core classes.
These classes are the MultiAttribute, Attribute, WAttribute, Attr, SpectrumAttr and ImageAttr classes.
The last three are used to create user attribute. Each attribute supported by a device is implemented by a separate
class. The Attr class is the root class for each of these classes. According to the attribute data format, the user
class implementing the attribute must inherit from the Attr, SpectrumAttr or ImageAtttr class. SpectrumAttr
class inherits from Attr class and Image Attr class inherits from the SpectrumAttr class. The Attr base class
defined three methods called is_allowed, read and write. These methods may be redefined in sub-classes in
order to implement the attribute specific behaviour.

» The other are device specific. For stepper motor device, they are named StepperMotor, StepperMotorClass and
DevReadPosition.

The Tango base class (Devicelmpl class)
Description

This class is the device root class and is the link between the Device pattern and CORBA. It inherits from CORBA
classes and implements all the methods needed to execute CORBA operations and attributes. For instance, its method
command_inout is executed when a client requests a command_inout operation. The method name of the Devicelmpl
class is executed when a client requests the name CORBA attribute. This class also encapsulates some key device data
like its name, its state, its status, its black box. ... This class is an abstract class and cannot be instantiated as is.

Contents

The contents of this class can be summarized as :
¢ Different constructors and one destructor

* Methods to access instance data members outside the class or its derivate classes. These methods are necessary
because data members are declared as protected.

* Methods triggered by CORBA attribute request

! The default is_allowed method behavior is to always allows the command

6.5. Device Servers 191

Tango Controls Documentation, Release 9.3.4

* Methods triggered by CORBA operation request

 The init_device() method. This method makes the class abstract. It should be implemented by a sub-class. It is
used by the inherited classes constructors.

¢ Methods triggered by the automatically added State and Status commands. These methods are declared virtual
and therefore can be redefined in sub-classes. These two commands are automatically added to the list of
commands defined for a class of devices. They are discussed in chapter [Auto_cmd]

* A method called always_executed_hook() always executed for each command before the device state is tested
for command execution. This method gives the programmer a hook where he(she) can program some mandatory
action which must be done before any command execution. An example of the such action is an hardware access
to the device to read its real hardware state.

* A method called read_attr_hardware() triggered by the read_attributes CORBA operation. This method is
called once for each read_attributes call. This method is virtual and may be redefined in sub-classes.

e A method called write_attr_hardware() triggered by the write_attributes CORBA operation. This method is
called once for each write_attributes call. This method is virtual and may be redefined in sub-classes.

* Methods for signal management (C++ specific)
¢ Data members like the device name, the device status, the device state

* Some private methods and data members

The DbDevice class

Each Devicelmpl instance is an aggregate with one instance of the DbDevice class. This DbDevice class can be used
to query or modify device properties. It provides an easy to use interface for device objects in the database. The
description of this class can be found in the Tango API reference documentation available on the Tango WEB pages.

The Command class
Description of the inheritance model

Within the TDSOM, each command supported by a device and implemented using the inheritance model is imple-
mented by a separate class. The Command class is the root class for each of these classes. It is an abstract class.
It stores the command name, the command argument types and description and mainly defines two methods which
are the execute and is_allowed methods. The execute method should be implemented in each sub-class. A default
is_allowed method exists for command always allowed. A command also stores a parameter which is the command
display type. It is also used to select if the command must be displayed according to the application mode (every day
operation or expert mode).

Description of the template model

Using this method, it is not necessary to create a separate class for each device command. In this method, each
command is represented by an instance of one of the template command classes. They are four template command
classes. All these classes inherits from the Command class. These four classes are :

1. The TemplCommand class. One object of this class must be created for each command without input nor
output parameters

2. The TemplCommandIn class. One object of this class must be created for each command without output
parameter but with input parameter

192 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

3. The TemplCommandOQOut class. One object of this class must be created for each command without input
parameter but with output parameter

4. The TemplCommandInOut class. One object of this class must be created for each command with input and
output parameters

These four classes redefine the execute and is_allowed method of the Command class. These classes provides con-
structors which allow the user to :

* specify which method must be executed by these classes execute method
* optionally specify which method must be executed by these classes is_allowed method.
The method specification is done via pointer to method.

Remember that it is possible to mix command implementation method within the same device pattern.

Contents

The content of this class can be summarizes as :
¢ (lass constructors and destructor
¢ Declaration of the execute method
¢ Declaration of the is_allowed method
* Methods to read/set class data members
* Methods to extract data from the object used to transfer data on the network
* Methods to insert data into the object used to transfer data on the network

* Class data members like command name, command input data type, command input data description. ..

The DeviceClass class
Description

This class implements all what is specific for a controlled object class. For instance, every device of the same class
supports the same list of commands and therefore, this list of available commands is stored in this DeviceClass. The
structure returned by the info operation contains a documentation URL?. This documentation URL is the same for
every device of the same class. Therefore, the documentation URL is a data member of this class. There should
have only one instance of this class per device pattern implementation. The device list is also stored in this class. It
is an abstract class because the two methods device_factory() and command_factory() are declared as pure virtual.
The rule of the device_factory() method is to create all the devices belonging to the device class. The rule of the
command_factory() method is to create one instance of all the classes needed to support device commands. This class
also stored the attribute_factory method. The rule of this method is to store in a vector of strings, the name of all the
device attributes. This method has a default implementation which is an empty body for device without attribute.

Contents

The contents of this class can be summarize as :
¢ The command_handler method

¢ Methods to access data members.

2 URL stands for Uniform Resource Locator

6.5. Device Servers 193

Tango Controls Documentation, Release 9.3.4

* Signal related method (C++ specific)
* Class constructor. It is protected to implements the Singleton pattern

¢ Class data members like the class command list, the device list. ..

The DbClass class

Each DeviceClass instance is an aggregate with one instance of the DbClass class. This DbClass class can be used to
query or modify class properties. It provides an easy to use interface for device objects in the database. The description
of this class can be found in the reference Tango C++ API documentation available in the Tango WEB pages.

The MultiAttribute class
Description

This class is a container for all the TANGO attributes defined for the device. There is one instance of this class for
each device. This class is mainly an aggregate of Attribute object(s). It has been developed to ease TANGO attribute
management.

Contents

The class contents could be summarizes as :
* Miscellaneous methods to retrieve one attribute object in the aggregate
* Method to retrieve a list of attribute with an alarm level defined
¢ Get attribute number method
* Miscellaneous methods to check if an attribute value is outside the authorized limits
* Method to add messages for all attribute with an alarm set

¢ Data members with the attribute list

The Attribute class
Description

There is one object of this class for each device attribute. This class is used to store all the attribute properties, the
attribute value and all the alarm related data. Like commands, this class also stores th attribute display type. It is
foreseen to be used by future Tango graphical application toolkit to select if the attribute must be displayed according
to the application mode (every day operation or expert mode).

Contents

* Miscellaneous method to get boolean attribute information
* Methods to access some data members

* Methods to get/set attribute properties

Method to check if the attribute is in alarm condition

194 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

¢ Methods related to attribute data
¢ Friend function to print attribute properties

» Data members (properties value and attribute data)

The WAttribute class
Description

This class inherits from the Attribute class. There is one instance of this class for each writable device attribute. On
top of all the data already managed by the Attribute class, this class stores the attribute set value.

Contents

Within this class, you will mainly find methods related to attribute set value storage and some data members.

The Attr class

Within the TDSOM, each attribute supported by a device is implemented by a separate class. The Attr class is the root
class for each of these classes. It is used in conjonction with the Attribute and Wattribute classes to implement Tango
attribute behaviour. It defines three methods which are the is_allowed, read and write methods. A default is_allowed
method exists for attribute always allowed. Default read and write empty methods are defined. For readable attribute,
it is necessary to overwrite the read method. For writable attribute, it is necessary to overwrite the write method and
for read and write attribute, both methods must be overwritten.

The SpectrumAttr class

This class inherits from the Attr class. It is the base class for user spectrum attribute. It is used in conjonction with the
Attribute and WAttribute class to implement Tango spectrum attribute behaviour. From the Attr class, it inherits the
Attr is_allowed, read and write methods.

The ImageAttr class

This class inherits from the SpectrumAttr class. It is the base class for user image attribute. It is used in conjonction
with the Attribute and WAttribute class to implement Tango image attribute behaviour. From the Attr class, it inherits
the Attr is_allowed, read and write methods.

The StepperMotor class
Description

This class inherits from the Devicelmpl class and is the class implementing the controlled object behavior. Each
command will trigger a method in this class written by the device server programmer and specific to the object to be
controlled. This class also stores all the device specific data.

6.5. Device Servers 195

Tango Controls Documentation, Release 9.3.4

Definition
1 class StepperMotor: public TANGO_BASE_CLASS
2 A
3 public
4 StepperMotor (Tango: :DeviceClass *,string &);
5 StepperMotor (Tango: :DeviceClass «,const char x);
6 StepperMotor (Tango: :DeviceClass #,const char x,const char «);
7 ~StepperMotor () {};
8
9 DevLong dev_read_position (DevLong) ;
10 DevLong dev_read_direction (DevLong) ;
11 bool direct_cmd_allowed(const CORBA::Any &);
12
13 virtual Tango::DevState dev_state();
14 virtual Tango::ConstDevString dev_status();
15
16 virtual void always_executed_hook () ;
17
18 virtual void read_attr_hardware (vector<long> &attr_list);
19 virtual void write_attr_hardware (vector<long> &attr_list);
20
21 void read_position(Tango::Attribute &);
22 bool is_Position_allowed(Tango: :AttReqType req);
23 void write_SetPosition (Tango::WAttribute &);
24 void read_Direction(Tango::Attribute &);
25
26 virtual void init_device();
27 virtual void delete_device();
28
29 void get_device_properties();
30
31 protected
32 long axis[AGSM_MAX_MOTORS];
33 DevLong position[AGSM_MAX MOTORS];
34 DevLong direction[AGSM_MAX_MOTORS];
35 long state[AGSM_MAX_ MOTORS];
36
37 Tango: :DevlLong xattr_Position_read;
38 Tango::DevlLong xattr_Direction_read;
39 Tango: :DevLong attr_SetPosition_write;
40
41 Tango: :DevLong min;
42 Tango: :Devlong max;
43
44 Tango: :Devlong =*ptr;
45 };
46

47 '} /+ End of StepperMotor namespace =*/
Line 1 : The StepperMotor class inherits from the Devicelmpl class
Line 4-7 : Class constructors and destructor

Line 9 : Method triggered by the DevReadPosition command

196 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 10-11 : Methods triggered by the DevReadDirection command

Line 13 : Redefinition of the dev_state method of the Devicelmpl class. This method will be triggered by the State
command

Line 14 : Redefinition of the dev_status method of the Devicelmpl class. This method will be triggered by the Status
command

Line 16 : Redefinition of the always_executed_hook method.
Line 26 : Definition of the init_device method (declared as pure virtual by the Devicelmpl class)
Line 27 : Definition of the delete_device method

Line 31-45 : Device data

The StepperMotorClass class
Description

This class inherits from the DeviceClass class. Like the DeviceClass class, there should be only one instance of
the StepperMotorClass. This is ensured because this class is written following the Singleton pattern as defined in
[Patterns]. All controlled object class data which should be defined only once per class must be stored in this object.

Definition
1 class StepperMotorClass : public DeviceClass
2 A
3 public:
4 static StepperMotorClass *init (const char «);
5 static StepperMotorClass =xinstance () ;
6 ~StepperMotorClass () {_instance = NULL;}
5
8 protected:
9 StepperMotorClass (string &);
10 static StepperMotorClass *_instance;
11 void command_factory () ;
12
13 private:
14 vold device_factory(Tango_DevVarStringArray =);
15}

Line 1 : This class is a sub-class of the DeviceClass class

Line 4-5 and 9-10: Methods and data member necessary for the Singleton pattern

Line 6 : Class destructor

Line 11 : Definition of the command_factory method declared as pure virtual in the DeviceClass call

Line 13-14 : Definition of the device_factory method declared as pure virtual in the DeviceClass class

The DevReadPosition class

6.5. Device Servers 197

Tango Controls Documentation, Release 9.3.4

Description

This is the class for the DevReadPosition command. This class implements the execute and is_allowed methods
defined by the Command class. This class is necessary because this command is implemented using the inheritance
model.

Definition

1 class DevReadPositionCmd : public Command

2 {

3 public:

4 DevReadPositionCmd (const char «*,Tango_CmdArgType, Tango_CmdArgType,

—sconst char x, const charx);
~DevReadPositionCmd () {};

virtual bool is_allowed (DeviceImpl %, const CORBA::Any &);
virtual CORBA::Any *execute (DeviceImpl x, const CORBA::Any &);

O 0 J o U

}i
Line 1 : The class is a sub class of the Command class
Line 4-5 : Class constructor and destructor

Line 7-8 : Definition of the is_allowed and execute method declared as pure virtual in the Command class.

The PositionAttr class
Description

This is the class for the Position attribute. This attribute is a scalar attribute and therefore inherits from the Attr base
class. This class implements the read and is_allowed methods defined by the Attr class.

Definition

1 class PositionAttr: public Tango::Attr

2 {

3 public:

4 PositionAttr () :Attr ("Position", Tango: :DEV_LONG, Tango: :READ) ;

5 ~PositionAttr () {};

6

7 virtual void read(Tango::DeviceImpl xdev,Tango::Attribute &att)

8 { (static_cast<StepperMotor =*>(dev))->read_Position(att);}

9 virtual bool is_allowed(Tango::DeviceImpl =xdev, Tango::AttReqType ty)
10 {return (static_cast<StepperMotor =*>(dev))->is_Position_allowed(ty);}
11 }i

Line 1 : The class is a sub class of the Attr class
Line 4-5 : Class constructor and destructor

Line 7 : Re-definition of the read method defined in the Attr class. This is simply a forward to the read_Position
method of the StepperMotor class

198 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 9 : Re-definition of the is_allowed method defined in the Attr class. This is also a forward to the
is_Position_allowed method of the StepperMotor class

Startup of a device pattern

To start the device pattern implementation for stepper motor device, four methods of the StepperMotorClass class must
be executed. These methods are :

1. The creation of the StepperMethodClass singleton via its init() method
2. The command_factory() method of the StepperMotorClass class

3. The attribute_factory() method of the StepperMotorClass class. This method has a default empty body for
device class without attributes.

4. The device_factory() method of the StepperMotorClass class

This startup procedure is described in figure 6.2

StepperMotorClass DeviceClass Starus State Init DevwRsadPosition Attribute st StepperMotor DeviceIzpl Attribute(s)
i i i i
init ! ! !
--------------- e L ;
,,,,,, e Vs

Fig. 7: Figure 6.2: Device pattern startup sequence

. The creation of the StepperMotorClass will automatically create an instance of the DeviceClass class. The constructor
of the DeviceClass class will create the Status, State and Init command objects and store them in its command list.

The command_factory() method will simply create all the user defined commands and add them in the command list.
The attribute_factory() method will simply build a list of device attribute names.

The device_factory() method will create each StepperMotor object and store them in the StepperMotorClass instance
device list. The list of devices to be created and their names is passed to the device_factory method in its input
argument. StepperMotor is a sub-class of Devicelmpl class. Therefore, when a StepperMotor object is created,
a Devicelmpl object is also created. The Devicelmpl constructor builds all the device attribute object(s) from the
attribute list built by the attribute_factory() method.

Command execution sequence

The figure 6.3

6.5. Device Servers 199

Tango Controls Documentation, Release 9.3.4

StepperMotor object StepperMotorClass singleton DevReadPosition StepperMotor object
command_inout
B —
command_hand| er

always_executed_hook

is_all owed

execute

dev_read_position

.

o hl

Fig. 8: Figure 6.3: Command execution timing

described how the method implementing a command is executed when a command_inout CORBA operation is
requested by a client. The command_inout method of the StepperMotor object (inherited from the DeviceImpl
class) is triggered by an instance of a class generated by the CORBA IDL compiler. This method calls the
command_handler() method of the StepperMotorClass object (inherited from the DeviceClass class). The com-
mand_handler method searches in its command list for the wanted command (using its name). If the command is
found, the always_executed_hook method of the StepperMotor object is called. Then, the is_allowed method of the
wanted command is executed. If the is_allowed method returns correctly, the execute method is executed. The execute
method extracts the incoming data from the CORBA object use to transmit data over the network and calls the user
written method which implements the command.

The automatically added commands

In order to increase the common behavior of every kind of devices in a TANGO control system, three commands are
automatically added to each class of devices. These commands are :

e State
¢ Status
e Init

The default behavior of the method called by the State command depends on the device state. If the device state is ON
or ALARM, the method will :

e read the attribute(s) with an alarm level defined
* check if the read value is above/below the alarm level and eventually change the device state to ALARM.
* returns the device state.

For all the other device state, the method simply returns the device state stored in the Devicelmpl class. Nevertheless,
the method used to return this state (called dev_state) is defined as virtual and can be redefined in Devicelmpl sub-
class. The difference between the default State command and the state CORBA attribute is the ability of the State
command to signal an error to the caller by throwing an exception.

The default behavior of the method called by the Status command depends on the device state. If the device state is
ON or ALARM, the method returns the device status stored in the Devicelmpl class plus additional message(s) for all
the attributes which are in alarm condition. For all the other device state, the method simply returns the device status
as it is stored in the Devicelmpl class. Nevertheless, the method used to return this status (called dev_status) is defined

200 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

as virtual and can be redefined in Devicelmpl sub-class. The difference between the default Status command and the
status CORBA attribute is the ability of the Status command to signal an error to the caller by throwing an exception.

The Init command is used to re-initialize a device without changing its network connection. This command calls
the device delete_device method and the device init_device method. The rule of the delete_device method is to free
memory allocated in the init_device method in order to avoid memory leak.

Reading/Writing attributes
Reading attributes

A Tango client is able to read Tango attribute(s) with the CORBA read_attributes call. Inside the device server, this
call will trigger several methods of the device class (StepperMotor in our example) :

1. The always_executed_hook() method.

2. A method call read_attr_hardware(). This method is called one time per read_attributes CORBA call. The aim
of this method is to read the device hardware and to store the result in a device class data member.

3. For each attribute to be read

1. A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow) the next
method to be executed. It is usefull for device with some attributes which can be read only in some precise
conditions. It has one parameter which is the request type (read or write)

2. A method called read_<att name>(). The aim of this method is to extract the real attribute value from the
hardware read-out and to store the attribute value into the attribute object. It has one parameter which is a
reference to the Attribute object to be read.

The figure 6.4 is a drawing of these method calls sequencing. For attribute always readable, a default is_allowed
method is provided. This method always returns true.

StepperMotor object PositionAttr class StepperMotor object
read_attribute |

always_executed_hook | ‘

read attr hardware I

| is Position_allowed

is_allowed

read_Position

read

Fig. 9: Figure 6.4: Read attribute sequencing

6.5. Device Servers 201

Tango Controls Documentation, Release 9.3.4

Writing attributes

A Tango client is able to write Tango attribute(s) with the CORBA write_attributes call. Inside a device server, this
call will trigger several methods of the device class (StepperMotor in our example)

1. The always_executed_hook() method.
2. For each attribute to be written

1. A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow) the next
method to be executed. It is usefull for device with some attributes which can be written only in some
precise conditions. It has one parameter which is the request type (read or write)

2. A method called write_<att name>(). It has one parameter which is a reference to the WAttribute object
to be written. The aim of this method is to get the data to be written from the WAttribute object and to
write this value into the corresponding hardware. If the hardware support writing several data in one go,
code the hardware access in the write_attr_harware() method.

3. The write_attr_hardware() method. The rule of this method is to effectively write the hardware in case it is able
to support writing several data in one go. If this is not the case, don’t code this method (a default implementation
is coded in the Tango base class) and code the real hardware access in each write_<att name>() method.

The figure 6.5 is a drawing of these method calls sequencing. For attribute always writeable, a default is_allowed
method is provided. This method always allways returns true.

StepperMotor object PositionAttr class StepperMotor object
write_attribute |

- always_executed_hook |

is_Position_allowed

is_allowed

write Position

write

write attr hardware

Fig. 10: Write attribute sequencing

The device server framework

202 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Vocabulary

A device server pattern implementation is embedded in a process called a device server. Several instances of the
same device server process can be used in a TANGO control system. To identify instances, a device server process is
started with an instance name which is different for each instance. The device server name is the couple device server
executable name/device server instance name. For instance, a device server started with the following command

Perkin id11

starts a device server process with an instance name idl1, an executable name Perkin and a device server name
Perkin/id11.

The DServer class

In order to simplify device server process administration, a device of the DServer class is automatically added to
each device server process. Thus, every device server process supports the same set of administration commands.
The implementation of this DServer class follows the device pattern and therefore, its device behaves like any other
devices. The device name is

dserver/device server executable name/device server instance name

For instance, for the device server process described in chapter [Voc], the dserver device name is dserver/perkin/id11.
This name is returned by the adm_name CORBA attribute available for every device. On top of the three automatically
added commands, this device supports the following commands :

DevRestart

RestartServer

QueryClass
* QueryDevice
Kill

AddLoggingTarget (C++ server only)

RemoveLoggingTarget (C++ server only)

GetLoggingTarget (C++ server only)

GetLoggingLevel (C++ server only)

SetLogginglevel (C++ server only)

StopLogging (C++ server only)

StartLogging (C++ server only)
PolledDevice

DevPollStatus
AddObjPolling
RemObjPolling
UpdObjPollingPeriod

StartPolling

StopPolling

EventSubscriptionChange

6.5. Device Servers 203

Tango Controls Documentation, Release 9.3.4

* ZmqgEventSubscriptionChange
* LockDevice
* UnLockDevice
* ReLockDevices
* DevLockStatus
These commands will be fully described later in this document.

Several controlled object classes can be embedded within the same device server process and it is the rule of this
device to create all these device server patterns and to call their command and device factories as described in Startup
of a device pattern. The name and number of all the classes to be created is known to this device after the execution
of a method called class_factory. It is the user responsibility to write this method.

The Tango::Util class
Description

This class merges a complete set of utilities in the same class. It is implemented as a singleton and there is only one
instance of this class per device server process. It is mandatory to create this instance in order to run a device server.
The description of all the methods implemented in this class can be found in [TangoRefMan].

Contents

Within this class, you can find :
« Static method to create/retrieve the singleton object

* Miscellaneous utility methods like getting the server output trace level, getting the CORBA ORB pointer, re-
trieving device server instance name, getting the server PID and more. Please, refer to [TangoRefMan] to get a
complete list of all these utility methods.

* Method to create the device pattern implementing the DServer class (server_init())

¢ Method to start the server (server_run())

TANGO database related methods

A complete device server

Within a complete device server, at least two implementations of the device server pattern are created (one for the
dserver object and the other for the class of devices to control). On top of that, one instance of the Tango::Util class
must also be created.

204 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Tango::Util Database

server_init() 1

server_run()

T oot
! | ! |
X Devicelmpl | X DeviceClass |
I ! 1 !
I ! 1 !
I ! 1 !
I ! 1 !
I ! 1 !
I ! 1 !
I ! 1 !
I : 1 :
I 1
I ! 1 !
I ! 1 !
I : 1 :
| DServer | . AClass |
I ! 1 !
I ! 1 !
I ! 1 !
I 4‘—'—' !
I ! 1 !

I
I 1 |
I 1

I
I 1
I] !

I
I 1 |
I 1

I
I 1
I 1 !

I

Fig. 11: Figure 6.6: A complete device server

A drawing of a complete device server is in figure 6.6

Device server startup sequence

The device server startup sequence is the following :
1. Create an instance of the Tango::Util class. This will initialize the CORBA Object Request Broker
2. Called the server_init method of the Tango::Util instance The call to this method will :

1. Create the DServerClass object of the device pattern implementing the DServer class. This will create the
dserver object which during its construction will :

1. Called the class_factory method of the DServer object. This method must create all the xxxClass
instance for all the device pattern implementation embedded in the device server process.

2. Call the command_factory and device_factory of all the classes previously created. The list of devices
passed to each call to the device_factory method is retrieved from the TANGO database.

3. Wait for incoming request with the server_run() method of the Tango::Util class.

Exchanging data between client and server

Exchanging data between clients and server means most of the time passing data between processes running on differ-
ent computer using the network. Tango limits the type of data exchanged between client and server and defines a way
to exchange these data. This chapter details these features. Memory allocation and error reporting are also discussed.

All the rules described in this chapter are valid only for data exchanged between client and server. For device
server internal data, classical C++ types can be used.

6.5. Device Servers 205

Tango Controls Documentation, Release 9.3.4

Command / Attribute data types

Commands have a fixed calling syntax - consisting of one input argument and one output argument. Arguments type
must be chosen out of a fixed set of 24 data types. Attributes support a sub-set of these data types (those are the data
type with the (1) note) plus the DevEnum data type. The following table details type name, code and the corresponding
CORBA IDL types.

The type name used in the type name column of this table is the C++ name. In the IDL file, all the Tango definition
are grouped in a IDL. module named Tango. The IDL module maps to C++ namespace. Therefore, all the data type
are parts of a namespace called Tango.

Type name IDL type

Tango::DevBoolean (1) boolean

Tango::DevShort (1) short

Tango::DevEnum (2) short (See chapter on advanced features)
Tango::DevLong (1) long

Tango::DevLong64 (1) long long

Tango::DevFloat (1) float

Tango::DevDouble (1) double

Tango::DevUShort (1) unsigned short

Tango::DevULong (1) unsigned long

Tango::DevULong64 (1) unsigned long long

Tango::DevString (1) string

Tango::DevVarCharArray sequence of unsigned char
Tango::DevVarShortArray sequence of short

Tango::DevVarLongArray sequence of long
Tango::DevVarLong64Array sequence of long long

Tango::Dev VarFloatArray sequence of float
Tango::DevVarDoubleArray sequence of double
Tango::DevVarUShortArray sequence of unsigned short
Tango::DevVarULongArray sequence of unsigned long
Tango::DevVarULong64 Array sequence of unsigned long long
Tango::DevVarStringArray sequence of string
Tango::DevVarLongStringArray structure with a sequence of long and a sequence of string
Tango::DevVarDoubleStringArray | structure with a sequence of double and a sequence of string
Tango::DevState (1) enumeration

Tango::DevEncoded (1) structure with a string and a sequence of char

The CORBA Interface Definition Language uses a type called sequence for variable length array.

Tango::DevUxxx types are used for unsigned types. The Tango::DevVarxxxxArray must be used when the data to
be transferred are variable length array. The Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
are structures with two fields which are variable length array of Tango long (32 bits) and variable length array of strings
for the Tango::DevVarLongStringArray and variable length array of double and variable length array of string for the
Tango::DevVarDoubleStringArray. The Tango::State type is used by the State command to return the device state.

Using data types with C++

Unfortunately, the mapping between IDL and C++ was defined before the C++ class library had been standardized.
This explains why the standard C++ string class or vector classes are not used in the IDL to C++ mapping.

TANGO commands/attributes argument types can be grouped on five groups depending on the IDL data type used.
These groups are :

206 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

1. Data type using basic types (Tango::DevBoolean, Tango::DevShort, Tango::DevEnum, Tango::DevLong,
Tango::DevFloat, Tango::DevDouble, Tango::DevUshort and Tango::DevULong)

2. Data type using strings (Tango::DevString type)

3. Data types using sequences (Tango::DevVarxxxArray types except Tango::DevVarLongStringArray and
Tango::DevVarDoubleStringArray)

4. Data types using structures (Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray types)
5. Data type using IDL enumeration (Tango::DevState type)

In the following sub chapters, only summaries of the IDL to C++ mapping are given. For a full description of the C++
mapping, please refer to [Henning].

Basic types

For these types, the mapping between IDL and C++ is obvious and defined in the following table.

Tango type name | IDL type C++ typedef

Tango::DevBoolean | boolean CORBA::Boolean unsigned char

Tango::DevShort short CORBA::Short short

Tango::DevEnum short CORBA::Short

Tango::DevLong long CORBA::Long int

Tango::DevLong64 | long long CORBA::LongLong | long long or long (64 bits chip)

Tango::DevFloat float CORBA::Float float

Tango::DevDouble | double CORBA::Double double

Tango::DevUShort | unsigned short CORBA::UShort unsigned short

Tango::DevULong | unsigned long CORBA::ULong unsigned long

Tango::DevULong64| unsigned long | CORBA:ULonglong unsigned long long or unsigned long (64 bits
long chip)

The types defined in the column named C++ should be used for a better portability. All these types are defined in the
CORBA namespace and therefore their qualified names is CORBA::xxx. The Tango data type DevEnum is a special
case described in detail in the chapter about advanced features.

Strings

Strings are mapped to char *. The use of new and delete for dynamic allocation of strings is not portable. Instead, you
must use helper functions defined by CORBA (in the CORBA namespace) and Tango. These functions are :

1 char *CORBA::string_alloc (unsigned long len);
2 char xTango::string_dup (const char x);
3 void Tango::string_free(char «);

These functions handle dynamic memory for strings. The string_alloc function allocates one more byte than requested
by the len parameter (for the trailing 0). The function string_dup combines the allocation and copy. Both string_alloc
and string_dup return a null pointer if allocation fails. The string_free function must be used to free memory allocated
with string_alloc and string_dup. Calling string_free for a null pointer is safe and does nothing. Tango::string_free
is available only since cppTango 9.3.3. Tango::string_dup is available only since Tango 9. If you are using an older
version of the Tango C++ library, you should use CORBA::string_free and CORBA.: :string_dup instead. The following
code fragment is an example of the Tango::DevString type usage :

1 Tango::DevString str = CORBA::string_alloc(5);
2 strcpy (str, "TANGO") ;

6.5. Device Servers 207

Tango Controls Documentation, Release 9.3.4

3

4 Tango::DevString strl = Tango::string_dup("Do you want to danse TANGO?
()"),

5

6 Tango::string_free(str);

7 Tango::string_free (strl);

Line 1-2 : TANGO is a five letters string. The CORBA::string_alloc function parameter is 5 but the function allocates
6 bytes

Line 4 : Example of the Tango::string_dup function

Line 6-7 : Memory deallocation

Sequences

IDL sequences are mapped to C++ classes that behave like vectors with a variable number of elements. Each IDL
sequence type results in a separate C++ class. Within each class representing a IDL sequence types, you find the
following method (only the main methods are related here) :

1. Four constructors.
1. A default constructor which creates an empty sequence.

2. The maximum constructor which creates a sequence with memory allocated for at least the number of
elements passed as argument. This does not limit the number of element in the sequence but only the way
how memory is allocated to store element

3. A sophisticated constructor where it is possible to assign the memory used by the sequence with a preallo-
cated buffer.

4. A copy constructor which does a deep copy
2. An assignment operator which does a deep copy
3. A length accessor which simply returns the current number of elements in the sequence

4. A length modifier which changes the length of the sequence (which is different than the number of elements in
the sequence)

5. Overloading of the [] operator. The subscript operator [] provides access to the sequence element. For a sequence
containing elements of type T, the [] operator is overloaded twice to return value of type T & and const T &.
Insertion into a sequence using the [] operator for the const T & make a deep copy. Sequence are numbered
between 0 and length() -1.

Note that using the maximum constructor will not prevent you from setting the length of the sequence with a call to
the length modifier. The following code fragment is an example of how to use a Tango::DevVarLongArray type

1 Tango: :DevVarLongArray »mylongseq_ptr;

2 mylongseq_ptr = new Tango::DevVarLongArray () ;
3 mylongseq_ptr—->length(4);

4

5 (xmylongseq_ptr) [0] = 1;

6 (»mylongseq_ptr) [1] = 2;

7 (»mylongseq_ptr) [2] = 3;

8 (»mylongseq_ptr) [3] = 4;

9
10 // (*mylongseq_ptr) [4] = 5;
11
12 CORBA: :Long nb_elt = mylongseq_ptr->length();

208 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

13

14 mylongseq_ptr—->length(5);

15 (»mylongseq_ptr) [4] = 5;

16

17 for (int i = 0;i < mylongseq_ptr->length();i++)

18 cout << "Sequence elt " << i + 1 << " = " << (xmylongseq ptr) [i]

<< endl;
Line 1 : Declare a pointer to Tango::DevVarLongArray type which is a sequence of long
Line 2 : Create an empty sequence
Line 3 : Change the length of the sequence to 4
Line 5 - 8 : Initialize sequence elements

Line 10 ; Oups !!! The length of the sequence is 4. The behavior of this line is undefined and may be a core can be
dumped at run time

Line 12 : Get the number of element actually stored in the sequence
Line 14-15 : Grow the sequence to five elements and initialize element number 5
Line 17-18 : Print sequence element

Another example for the Tango::DevVarStringArray type is given

1 Tango: :DevVarStringArray mystrseq(4);

2 mystrseq.length (4);

3

4 mystrseq[0] = Tango::string_dup ("Rock and Roll");
5 mystrseq[l] = Tango::string_dup ("Bossa Nova");

6 mystrseq[2] = Tango::string_dup("Waltz");

7 mnystrseq[3] = Tango::string_dup ("Tango");

8

9 CORBA::Long nb_elt = mystrseqg.length();

10

11 for (int i = 0;1i < mystrseq.length();i++)

12 cout << "Sequence elt " << i + 1 << " =" << mystrseq[i] << endl;

Line 1 : Create a sequence using the maximum constructor

Line 2 : Set the sequence length to 4. This is mandatory even if you used the maximum constructor.
Line 4-7 : Populate the sequence

Line 9 : Get how many strings are stored into the sequence

Line 11-12 : Print sequence elements.

Structures

Only three TANGO types are defined as structures. These types are the Tango::DevVarLongStringArray, the
Tango::DevVarDoubleStringArray and the Tango::DevEncoded data type. IDL structures map to C++ structures with
corresponding members. For the Tango::DevVarLongStringArray, the two members are named svalue for the sequence
of strings and Ivalue for the sequence of longs. For the Tango::DevVarDoubleStringArray, the two structure members
are called svalue for the sequence of strings and dvalue for the sequence of double. For the Tango::DevEncoded,
the two structure members are called encoded_format for a string describing the data coding and encoded_data for
the data themselves. The encoded_data field type is a Tango::DevVarCharArray. An example of the usage of the
Tango::DevVarLongStringArray type is detailed below.

6.5. Device Servers 209

Tango Controls Documentation, Release 9.3.4

myvl.lvalue.length(1l);
myvl.lvalue[0] = 10;

1 Tango: :DevVarLongStringArray my_vl;

2

3 myvl.svalue.length (2);

4 myvl.svalue[0] = CORBA_string_dup ("Samba");
5 myvl.svalue[l] = CORBA_string_dup ("Rumba");
6

7

8

Line 1 : Declaration of the structure
Line 3-5 : Initialization of two strings in the sequence of string member

Line 7-8 : Initialization of one long in the sequence of long member

The DevState data type

The Tango::DevState data type is used to transfer device state between client and server. It is a IDL enumeration. IDL
enumerated types map to C++ enumerations (amazing no!) with a trailing dummy enumerator to force enumeration to
be a 32 bit type. The first enumerator will have the value 0, the next one will have the value 1 and so on.

Tango::DevState state;

state = Tango: :0N;
state Tango: :FAULT;

W N

Passing data between client and server

In order to have one definition of the CORBA operation used to send a command to a device whatever the command
data type is, TANGO uses CORBA IDL any object. The IDL type any provides a universal type that can hold a value
of arbitrary IDL types. Type any therefore allows you to send and receive values whose types are not fixed at compile
time.

Type any is often compared to a void * in C. Like a pointer to void, an any value can denote a datum of any type.
However, there is an important difference; whereas a void * denotes a completely untyped value that can be interpreted
only with advance knowledge of its type, values of type any maintain type safety. For example, if a sender places a
string value into an any, the receiver cannot extract the string as a value of the wrong type. Attempt to read the contents
of an any as the wrong type cause a run-time error.

Internally, a value of type any consists of a pair of values. One member of the pair is the actual value contained inside
the any and the other member of the pair is the type code. The type code is a description of the value’s type. The type
description is used to enforce type safety when the receiver extracts the value. Extraction of the value succeeds only if
the receiver extracts the value as a type that matches the information in the type code.

Within TANGO, the command input and output parameters are objects of the IDL any type. Only insertion/extraction
of all types defined as command data types is possible into/from these any objects.

C++ mapping for IDL any type

The IDL any maps to the C++ class CORBA::Any. This class contains a large number of methods with mainly
methods to insert/extract data into/from the any. It provides a default constructor which builds an any which contains
no value and a type code that indicates “no value”. Such an any must be used for command which does not need input
or output parameter. The operator <<= is overloaded many times to insert data into an any object. The operator >>=
is overloaded many times to extract data from an any object.

210 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Inserting/Extracting TANGO basic types

The insertion or extraction of TANGO basic types is straight forward using the <<= or >>= operators. Nevertheless,
the Tango::DevBoolean type is mapped to a unsigned char and other IDL types are also mapped to char C++ type
(The unsigned is not taken into account in the C++ overloading algorithm). Therefore, it is not possible to use op-
erator overloading for these IDL types which map to C++ char. For the Tango::DevBoolean type, you must use the
CORBA::Any: :from_boolean or CORBA::Any::to_boolean intermediate objects defined in the CORBA::Any class.

Inserting/Extracting TANGO strings

The <<= operator is overloaded for const char * and always makes a deep copy. This deep copy is done using the
Tango::string_dup function. The extraction of strings uses the >>= overloaded operator. The main point is that the
Any object retains ownership of the string, so the returned pointer points at memory inside the Any. This means that
you must not deallocate the extracted string and you must treat the extracted string as read-only.

Inserting/Extracting TANGO sequences

Insertion and extraction of sequences also uses the overloaded <<= and >>= operators. The insertion operator is
overloaded twice: once for insertion by reference and once for insertion by pointer. If you insert a value by reference,
the insertion makes a deep copy. If you insert a value by pointer, the Any assumes the ownership of the pointed-to
memory.

Extraction is always by pointer. As with strings, you must treat the extracted pointer as read-only and must not
deallocate it because the pointer points at memory internal to the Any.

Inserting/Extracting TANGO structures

This is identical to inserting/extracting sequences.

Inserting/Extracting TANGO enumeration

This is identical to inserting/extracting basic types

1 CORBA: :Any aj;

2 Tango::DevLong 11,12;

3 11 = 2;

4 a <<= 11;

5 a >>= 12;

6

7 CORBA: :Any b;

8 Tango: :DevBoolean bl,b2;

9 bl = true;

10 b <<= CORBA::Any::from_boolean (bl);
11 b >>= CORBA::Any::to_boolean (b2);
12

13 CORBA: :Any s;

14 Tango::DevString strl,str2;
15 strl = "I like dancing TANGO";
16 s <<= strl;
17 s >>= str2;
18

6.5. Device Servers 211

Tango Controls Documentation, Release 9.3.4

19 // Tango::string_free (str2);
20 // a <<= Tango::string_dup ("Oups") ;

21

22 CORBA: :Any seqg;

23 Tango: :DevVarFloatArray fl_arrl;

24 fl_arrl.length(2);

25 fl_arrl[0] = 1.0;

26 fl_arrl[l] = 2.0;

27 seq <<= fl_arrl;

28 const Tango::DevVarFloatArray xfl_arr_ptr;
29 seq >>= fl_arr_ptr;

30

31 // delete fl_arr_ptr;
Line 1-5 : Insertion and extraction of Tango::DevLong type

Line 7-11 Insertion and extraction of Tango::DevBoolean type using the CORBA::Any::from_boolean and
CORBA::Any::to_boolean intermediate structure

Line 13-17 : Insertion and extraction of Tango::DevString type
Line 19 : Wrong ! You should not deallocate a string extracted from an any
Line 20 : Wrong ! Memory leak because the <<= operator will do the copy.

Line 22-29 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by reference and the use of
the <<= operator makes a deep copy of the sequence. Therefore, after line 27, it is possible to deallocate the sequence

Line 31: Wrong.! You should not deallocate a sequence extracted from an any

The insert and extract methods of the Command class

In order to simplify the insertion/extraction into/from Any objects, small helper methods have been written in the
Command class. The signatures of these methods are :

1 void extractextract (const CORBA::Any &,<Tango type> &);
2 CORBA::Any +*insertinsert (<Tango type>);

An extract method has been written for all Tango types. These method extract the data from the Any object passed as
parameter and throw an exception if the Any data type is incompatible with the awaiting type. An insert method have
been written for all Tango types. These method create an Any object, insert the data into the Any and return a pointer
to the created Any. For Tango types mapped to sequences or structures, two insert methods have been written: one for
the insertion from pointer and the other for the insertion from reference. For Tango strings, two insert methods have
been written: one for insertion from a classical Tango::DevString type and the other from a const Tango::DevString
type. The first one deallocate the memory after the insert into the Any object. The second one only inserts the string
into the Any object.

The previous example can be rewritten using the insert/extract helper methods (We suppose that we can use the
Command class insert/extract methods)

Tango::DevLong 11,12;

11 = 2;

CORBA: :Any *a_ptr = insert (11);
extract (xa_ptr,12);

Tango: :DevBoolean bl,b2;
bl = true;
CORBA: :Any *b_ptr = insert (bl);

O ~J o U b W

212 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

9 extract (xb_ptr,b2);
10
11 Tango::DevString strl,str2;
12 strl = "I like dancing TANGO";
13 CORBA::Any *s_ptr = insert(strl);
14 extract (xs_ptr,str2);
15
16 Tango::DevVarFloatArray fl_arrl;
17 fl_arrl.length(2);
18 fl _arrl[0] = 1.0;
19 fl _arrl[l] = 2.0;
20 insert (fl1_arrl);
21 CORBA: :Any *seq_ptr = insert (fl_arrl);
22 Tango::DevVarFloatArray *fl_arr_ptr;
23 extract (xseq_ptr,fl_arr_ptr);

Line 1-4 : Insertion and extraction of Tango::DevLong type
Line 6-9 : Insertion and extraction of Tango::DevBoolean type
Line 11-14 : Insertion and extraction of Tango::DevString type

Line 16-23 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by reference which makes
a deep copy of the sequence. Therefore, after line 20, it is possible to deallocate the sequence

C++ memory management

The rule described here are valid for variable length command data types like Tango::DevString or all the Tango::
DevVarxxxxArray types.

The method executing the command must allocate the memory used to pass data back to the client or use static memory
(like buffer declares as object data member. If necessary, the ORB will deallocate this memory after the data have been
sent to the caller. Fortunately, for incoming data, the method have no memory management responsibilities. The details
about memory management given in this chapter assume that the insert/extract methods of the Tango::Command class
are used and only the method in the device object is discussed.

For string

Example of a method receiving a Tango::DevString and returning a Tango::DevString is detailed just below

1 Tango: :DevString MyDev::dev_string(Tango::DevString argin)
2 {

3 Tango: :DevString argout;

4

5 cout << "the received string is " << argin << endl;
6

7 string str("Am I a good Tango dancer ?");

8 argout = new char[str.size() + 1];

9 strcpy (argout, str.c_str());

10

11 return argout;

12 }

Note that there is no need to deallocate the memory used by the incoming string. Memory for the outgoing string is
allocated at line 8, then it is initialized at the following line. The memory allocated at line 8 will be automatically freed

6.5. Device Servers 213

Tango Controls Documentation, Release 9.3.4

by the usage of the Command.: :insert() method. Using this schema, memory is allocated/freed each time the command
is executed. For constant string length, a statically allocated buffer can be used.

1 Tango: :ConstDevString MyDev::dev_string(Tango::DevString argin)
2 {

3 Tango: :ConstDevString argout;

4

5 cout << "the received string is " << argin << endl;

6

7 argout = "Hello world";

8 return argout;

9 }

A Tango::ConstDevString data type is used. It is not a new data Tango data type. It has been introduced only to allows
Command: :insert() method overloading. The argout pointer is initialized at line 7 with memory statically allocated. In
this case, no memory will be freed by the Command: :insert() method. There is also no memory copy in the contrary
of the previous example. A buffer defined as object data member can also be used to set the argout pointer.

For array/sequence

Example of a method returning a Tango::DevVarLongArray is detailed just below

1 Tango: :DevVarLongArray =*MyDev::dev_array ()

2 {

3 Tango::DevVarLongArray =*argout = new Tango::DevVarLongArray();
4

5 long output_array_length = ...;

6 argout->length (output_array_length);

7 for (int i = 0;i < output_array_length;i++)
8 (xargout) [1] = 1i;

9
10 return argout;
11 }

In this case, memory is allocated at line 3 and 6. Then, the sequence is populated. The sequence is created and
returned using pointer. The Command: :insert() method will insert the sequence into the CORBA::Any object using
this pointer. Therefore, the CORBA::Any object will take ownership of the allocated memory. It will free it when
it will be destroyed by the CORBA ORB after the data have been sent away. It is also possible to use a statically
allocated memory and to avoid copying in the sequence used to returned the data. This is explained in the following
example assuming a buffer of long data is declared as device data member and named buffer.

return argout;

1 Tango: :DevVarLongArray =*MyDev::dev_array ()

2 {

3 Tango: :DevVarLongArray *xargout;

4

5 long output_array_length = ...;

6 argout = create_DevVarlLongArray (buffer,output_array_length);
5

8

}

At line 3 only a pointer to a DevVarLongArray is defined. This pointer is set at line 6 using the cre-
ate_DevVarLongArray() method. This method will create a sequence using this buffer without memory allocation
and with minimum copying. The Command: :insert() method used here is the same than the one used in the previous
example. The sequence is created in a way that the destruction of the CORBA::Any object in which the sequence will
be inserted will not destroy the buffer. The following create_xxx methods are defined in the Devicelmpl class :

214 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Method name data type
create_DevVarCharArray() unsigned char
create_DevVarShortArray() short
create_DevVarLongArray() DevLong
create_DevVarLong64Array() DevLong64
create_DevVarFloatArray() float

create_DevVarDoubleArray() double
create_DevVarUShortArray() unsigned short
create_DevVarULongArray() DevULong
create_DevVarULong64Array() | DevULong64

For string array/sequence

Example of a method returning a Tango::DevVarStringArray is detailed just below

1 Tango: :DevVarStringArray xMyDev::dev_str_array ()
2 {

3 Tango: :DevVarStringArray =xargout = new Tango::DevVarStringArray();
4

5 argout—->length (3);

6 (xargout) [0] = Tango::string_dup ("Rumba");

7 (xargout) [1] = Tango::string_ dup("Waltz");

8 string str ("Jerck");

9 (xargout) [2] = Tango::string dup(str.c_str());
10 return argout;
11 }

Memory is allocated at line 3 and 5. Then, the sequence is populated at lines 6,7 and 9. The usage of the
Tango::string_dup function also allocates memory. The sequence is created and returned using pointer. The Com-
mand::insert() method will insert the sequence into the CORBA::Any object using this pointer. Therefore, the
CORBA::Any object will take ownership of the allocated memory. It will free it when it will be destroyed by the
CORBA ORB after the data have been sent away. For portability reason, the ORB uses the CORBA::string_free
function to free the memory allocated for each string. This is why the corresponding Tango::string_dup or
CORBA::string_alloc function must be used to reserve this memory.It is also possible to use a statically allocated
memory and to avoid copying in the sequence used to returned the data. This is explained in the following example
assuming a buffer of pointer to char is declared as device data member and named int_buffer.

1 Tango: :DevVarStringArray xDocDs::dev_str_array ()

2 {

3 int_buffer[0] = "first";

4 int_buffer[l] = "second";

5

6 Tango: :DevVarStringArray =*argout;

7 argout = create_DevVarStringArray (int_buffer, 2);
8 return argout;

9 }

The intermediate buffer is initialized with statically allocated memory at lines 3 and 4. The returned sequence is
created at line 7 with the create_DevVarStringArray() method. Like for classical array, the sequence is created in a
way that the destruction of the CORBA::Any object in which the sequence will be inserted will not destroy the buffer.

6.5. Device Servers 215

Tango Controls Documentation, Release 9.3.4

For Tango composed types

Tango supports only two composed types which are Tango::DevVarLongStringArray and
Tango::DevVarDoubleStringArray. These types are translated to C++ structure with two sequences. It is not
possible to use memory statically allocated for these types. Each structure element must be initialized as described in
the previous sub-chapters using the dynamically allocated memory case.

Reporting errors

Tango uses the C++ try/catch plus exception mechanism to report errors. Two kind of errors can be transmitted
between client and server :

1. CORBA system error. These exceptions are raised by the ORB and indicates major failures (A communication
failure, An invalid object reference. . .)

2. CORBA user exception. These kind of exceptions are defined in the IDL file. This allows an exception to
contain an arbitrary amount of error information of arbitrary type.

TANGO defines one user exception called DevFailed. This exception is a variable length array of DevError type (a
sequence of DevError). The DevError type is a four fields structure. These fields are :

1. A string describing the type of the error. This string replaces an error code and allows a more easy management
of include files.

2. The error severity. It is an enumeration with the three values which are WARN, ERR or PANIC.
3. A string describing in plain text the reason of the error
4. A string describing the origin of the error

The Tango::DevFailed type is a sequence of DevError structures in order to transmit to the client what is the primary
error reason when several classes are used within a command. The sequence element 0 must be the DevError structure
describing the primary error. A method called print_exception() defined in the Tango::Except class prints the content
of exception (CORBA system exception or Tango::DevFailed exception). Some static methods of the Tango::Except
class called throw_exception() can be used to throw Tango::DevFailed exception. Some other static methods called
re_throw_exception() may also be used when the user want to add a new element in the exception sequence and
re-throw the exception. Details on these methods can be found in [TangoRefMan].

Example of throwing exception

This example is a piece of code from the command_handler() method of the Devicelmpl class. An exception is thrown
to the client to indicate that the requested command is not defined in the command list.

1 TangoSys_OMemStream o;

2

3 0 << "Command " << command << " not found" << ends;

4 Tango: :Except::throw_exception ("API_CommandNotFound",
5 o.str (),

6 "DeviceClass: :command_handler");
5

8

9 try
10 {
R
12 }
13 catch (Tango::DevFailed &e)

216 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

14 {

15 TangoSys_OMemStream o;

16

17 o0 << "Command " << command << " not found" << ends;

18 Tango: :Except::re_throw_exception (e,

19 "API_CommandNotFound",

20 o.str (),

21 "DeviceClass: :command_handler") ;
22 }

Line 1 : Build a memory stream. Use the TangoSys_MemStream because memory streams are not managed the same
way between Windows and Unix

Line 3 : Build the reason string in the memory stream

Line 4-5 : Throw the exception to client using one of the throw_exception static method of the Except class. This
throw_exception method used here allows the definition of the error type string, the reason string and the origin string
of the DevError structure. The remaining DevError field (the error severity) will be set to its default value. Note that
the first and third parameters are casted to a const char *. Standard C++ defines that such a string is already a const
char * but the GNU C++ compiler (release 2.95) does not use this type inside its function overloading but rather uses
a char * which leads to calling the wrong function.

Line 13-22 : Re-throw an already catched tango::DevFailed exception with one more element in the exception se-
quence.

The Tango Logging Service

A first introduction about this logging service has been done in chapter [sec:The-Tango-Logging]

The TANGO Logging Service (TLS) gives the user the control over how much information is actually generated and to
where it goes. In practice, the TLS allows to select both the logging level and targets of any device within the control
system.

Logging Targets

The TLS implementation allows each device logging requests to print simultaneously to multiple destinations. In the
TANGO terminology, an output destination is called a logging target. Currently, targets exist for console, file and log
consumer device.

CONSOLE: logs are printed to the console (i.e. the standard output),

FILE: logs are stored in a XML file. A rolling mechanism is used to backup the log file when it reaches a certain size
(see below),

DEVICE: logs are sent to a device implementing a well known TANGO interface (see section [sec:Tango-log-
consumer] for a definition of the log consumer interface). One implementation of a log consumer associated to a
graphical user interface is available within the Tango package. It is called the LogViewer.

The device’s logging behavior can be control by adding and/or removing targets.

Note : When the size of a log file (for file logging target) reaches the so-called rolling-file-threshold (rft), it is backuped
as current_log_file_name + _1 and a new current_log_file_name is opened. Obviously, there is only one backup file at
a time (i.e. any existing backup is destroyed before the current log file is backuped). The default threshold is 20 Mb,
the minimum is 500 Kb and the maximum is 1000 Mb.

6.5. Device Servers 217

Tango Controls Documentation, Release 9.3.4

Logging Levels

Devices can be assigned a logging level. It acts as a filter to control the kind of information sent to the targets. Since,
there are (usually) much more low level log statements than high level statements, the logging level also control the
amount of information produced by the device. The TLS provides the following levels (semantic is just given to be
indicative of what could be log at each level):

OFF: Nothing is logged

FATAL: A fatal error occurred. The process is about to abort

ERROR: An (unrecoverable) error occurred but the process is still alive

WARN: An error occurred but could be recovered locally

INFO: Provides information on important actions performed

DEBUG: Generates detailed information describing the internal behavior of a device
Levels are ordered the following way:

DEBUG < INFO < WARN < ERROR < FATAL < OFF

For a given device, a level is said to be enabled if it is greater or equal to the logging level assigned to this device. In
other words, any logging request which level is lower than the device’s logging level is ignored.

Note: The logging level can’t be controlled at target level. The device’s targets shared the same device logging level.

Sending TANGO Logging Messages
Logging macros in C++

The TLS provides the user with easy to use C++ macros with printf and stream like syntax. For each logging level, a
macro is defined in both styles:

* LOG_{FATAL, ERROR, WARN, INFO or DEBUG}
* {FATAL, ERROR, WARN, INFO or DEBUG}_STREAM

These macros are supposed to be used within the device’s main implementation class (i.e. the class that inherits
(directly or indirectly) from the Tango::Devicelmpl class). In this context, they produce logging messages containing
the device name. In other words, they automatically identify the log source. Section [sub:C++-logging-in] gives a
trick to log in the name of device outside its main implementation class. Printf like example:

LOG_DEBUG((Msg#%d - Hello world, i++));
Stream like example:
DEBUG_STREAM << Msg# << i++ << - Hello world << endl;

These two logging requests are equivalent. Note the double parenthesis in the printf version.

C++ logging in the name of a device

A device implementation is sometimes spread over several classes. Since all these classes implement the same device,
their logging requests should be associated with this device name. Unfortunately, the C++ logging macros can’t be
used because they are outside the device’s main implementation class. The Tango::LogAdapter class is a workaround
for this limitation.

218 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Any method not member of the device’s main implementation class, which send log messages associated to a device
must be a member of a class inheriting from the Tango::LogAdapter class. Here is an example:

1 class MyDeviceActualImpl: public Tango::LogAdapter

2

3 public

4 MyDeviceActualImpl (..., Tango: :DeviceImpl =*device,...)

5 :Tango: :LogAdpater (device)

6 {

5

8 //

9 // The following log is associated to the device passed to the constructor
10 //
11 DEBUG_STREAM << "In MyDeviceActualImpl constructor" << endl;
12
13
14 }
15 };

Writing a device server process

Writing a device server can be made easier by adopting the correct approach. This chapter will describe how to
write a device server process. It is divided into the following parts : understanding the device, defining device com-
mands/attributes/pipes, choosing device state and writing the necessary classes. All along this chapter, examples will
be given using the stepper motor device server. Writing a device server for our stepper motor example device means
writing :

¢ The main function

* The class_factory method (only for C++ device server)

* The StepperMotorClass class

* The DevReadPositionCmd and DevReadDirectionCmd classes
e The PositionAttr, SetPositionAttr and DirectionAttr classes

* The StepperMotor class.

All these functions and classes will be detailed. The stepper motor device server described in this chapter supports 2
commands and 3 attributes which are :

¢ Command DevReadPosition implemented using the inheritance model
¢ Command DevReadDirection implemented using the template command model

* Attribute Position (position of the first motor). This attribute is readable and is linked with a writable attribute
(called SetPosition). When the value of this attribute is requested by the client, the value of the associated
writable attribute is also returned.

* Attribute SetPosition (writable attribute linked with the Position attribute). This attribute has some properties
with user defined default value.

¢ Attribute Direction (direction of the first motor)

As the reader will understand during the reading of the following sub-chapters, the command and attributes classes
(DevReadPositionCmd, DevReadDirectionCmd, PositionAttr, SetPositionAttr and DirectionAttr) are very simple
classes. A tool called Pogo has been developped to automatically generate/maintain these classes and to write part of
the code needed in the remaining one. See Pogo manual to know more on this Pogo tool.

6.5. Device Servers 219

Tango Controls Documentation, Release 9.3.4

In order to also gives an example of how the database objects part of the Tango device pattern could be used, our
device have two properties. These properties are of the Tango long data types and are named “Max’ and “Min”.

Understanding the device

The first step before writing a device server is to develop an understanding of the hardware to be programmed. The
Equipment Responsible should have description of the hardware and its operating modes (manuals, spec sheets etc.).
The Equipment Responsible must also provide specifications of what the device server should do. The Device Server
Programmer should demand an exact description of the registers, alarms, interlocks and any timing constraints which
have to be kept. It is very important to have a good understanding of the device interfacing before starting designing a
new class.

Once the Device Server Programmer has understood the hardware the next important step is to define what is a logical
device i.e. what part of the hardware will be abstracted out and treated as a logical device. In doing so the following
points of the TDSOM should be kept in mind

 Each device is known and accessed by its ascii name.

» The device is exported onto the network to be imported by applications.
» Each device belongs to a class.

* A list of commands exists per device.

* Applications use the device server api to execute commands on a device.

The above points have to be taken into account when designing the level of device abstraction. The definition of
what is a device for a certain hardware is primarily the job of the Device Server Programmer and the Applications
Programmer but can also involve the Equipment Responsible. The Device Server Programmer should make sure that
the Applications Programmer agrees with her definition of what is a device.

Here are some guidelines to follow while defining the level of device abstraction -

« efficiency, make sure that not a too fine level of device abstraction has been chosen. If possible group as many
attributes together to form a device. Discuss this with the Applications Programmer to find out what is efficient
for her application.

* hardware independency, one of the main reasons for writing device servers is to provide the Applications
Programmer with a software interface as opposed to a hardware interface. Hide the hardware structure of the
device. For example if the user is only interested in a single channel of a multichannel device then define each
channel to be a logical device. The user should not be aware of hardware addresses or cabling details. The
user is very often a scientist who has a physics-oriented world view and not a hardware-oriented world view.
Hardware independency also has the advantage that applications are immune to hardware changes to the device

* object oriented world view, another raison d’etre behind the device server model is to build up an object
oriented view of the world. The device should resemble the user’s view of the object as closely as possible. In
the case of the ESRF’s beam lines for example, the devices should resemble beam line scientist’s view of the
machine.

» atomism, each device can be considered like an atom - is a independent object. It should appear independent
to the client even if behind the scenes it shares some hardware or software with other objects. This is often
the case with multichannel devices where the user would like to see each channel as a device but it is obvious
that the channels cannot be programmed completely independently. The logical device is there to hide or make
transparent this fact. If it is impossible to send commands to one device without modifying another device then
a single device should be made out the two devices.

* tailored vs general, one of the philosophies of the TDSOM is to provide tailored solutions. For example instead
of writing one serial line class which treats the general case of a serial line device and leaving the device protocol
to be implemented in the client the TDSOM advocates implementing a device class which handles the protocol

220 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

of the device. This way the client only has to know the commands of the class and not the details of the protocol.
Nothing prevents the device class from using a general purpose serial line class if it exists of course.

Defining device commands

Each device has a list of commands which can be executed by the application across the network or locally. These
commands are the Application Programmer’s network knobs and dials for interacting with the device.

The list of commands to be implemented depends on the capabilities of the hardware, the list of sensible functions
which can be executed at a distance and of course the functionality required by the application. This implies a close
collaboration between the Equipment Responsible, Device Server Programmer and the Application Programmer.

When drawing up the list of commands particular attention should be paid to the following points

* performance, no single command should monopolize the device server for a long time (a nominal value for
long is one second). Commands should be implemented in such a way that it executes immediately returning
with a response. At best try to keep command execution time down to less than the typical overhead of an rpc
call i.e. som milliseconds. This of course is not always possible e.g. a serial line device could require 100
milliseconds of protocol exchange. The Device Server Programmer should find the best trade-off between the
users requirements and the devices capabilities. If a command implies a sequence of events which could last for
a long time then implement the sequence of events in another thread - don’t block the device server.

* robustness, should be provided which allow the client to recover from error conditions and or do a warm startup.

Standard commands

A minimum set of three commands exist for all devices. These commands are
» State which returns the state of a device
» Status which returns the status of the device as a formatted ascii string
¢ Init which re-initialize a device without changing its network connection

These commands have already been discussed in [Auto_cmd]

Choosing device state

The device state is a number which reflects the availability of the device. To simplify the coding for generic application,
a predefined set of states are supported by TANGO. This list has 14 members which are

6.5. Device Servers 221

Tango Controls Documentation, Release 9.3.4

State name
ON

OFF
CLOSE
OPEN
INSERT
EXTRACT
MOVING
STANDBY
FAULT

INIT
RUNNING
ALARM
DISABLE
UNKNOWN

The names used here have obvious meaning.

Device server utilities to ease coding/debugging

The device server framework supports one set of utilities to ease the process of coding and debugging device server
code. This utility is :

1. The device server verbose option

Using this facility avoids the usage of the classical “#ifdef DEBUG” style which makes code less readable.

The device server verbose option

Each device server supports a verbose option called -v. Four verbose levels are defined from 1 to 4. Level 4 is the
most talkative one. If you use the -v option without specifying level, level 4 will be assumed.

Since Tango release 3, a Tango Logging Service has been introduced (detailed in chapter [The-Tango-Logging chap-
ter]). This -v option set-up the logging service. If it used, it will automatically add a console target to all devices
embedded within the device server process. Level 1 and 2 will set the logging level to all devices embedded within
the device server to INFO. Level 3 and 4 will set the logging level to all devices embedded within the device server to
DEBUG. All messages sent by the API layer are associated to the administration device.

C++ utilities to ease device server coding

Some utilities functions have been added in the C++ release to ease Tango device server development. These utilities
allow the user to

¢ Init a C++ vector from a data of one of the Tango DevVarXXXArray data types
¢ Init a data of one of the Tango::DevVarxxxArray data type from a C++ vector
* Print a data of one of Tango::DevVarxxxArray data type

They mainly used the “<<” operator overloading features. The following code lines are an example of usage of these
utilities.

222 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

O J o U b w N

O

10
11
12
13
14

vector<string> vl;
vl.push_back ("one");
vl.push_back ("two");
vl.push_back ("three");

Tango: :DevVarStringArray s;
s << vl;

cout << s << endl;

vector<string> v2;

v2 << s;
for (int i = 0;1 < v2.size();1i++)
cout << "vector element = " << v2[i] << endl;

Line 1-4 : Create and Init a C++ string vector

Line 7 : Init a Tango::DevVarStringArray data from the C++ vector

Line 8 : Print all the Tango::DevVarStringArray element in one line of code.

Line 11 : Init a second empty C++ string vector with the content of the Tango::DevVarStringArray

Line 13-14 : Print vector element

Warning: Note that due to a strange behavior of the Windows VC++ compiler compared to other compilers, to use
these utilities with the Windows VC++ compiler, you must add the line “using namespace tango” at the beginning of
your source file.

Avoiding name conflicts

Namespace are used to avoid name conflicts. Each device pattern implementation is defined within its own namespace.
The name of the namespace is the device pattern class name. In our example, the namespace name is StepperMotor.

The device server main function

A device server main function (or method) always follows the same framework. It exactly implements all the action
described in chapter [Server_startup]. Even if it could be always the same, it has not been included in the library
because some linkers are perturbed by the presence of two main functions.

O J o U b W R

R e
NV S I o B e)

#include <tango.h>

int main(int argc,char xargv([])

{

Tango::Util =tg;

try
{

tg = Tango::Util::init (argc,argv);

tg->server_init ();

6.5. Device Servers 223

Tango Controls Documentation, Release 9.3.4

15 cout << "Ready to accept request" << endl;
16 tg->server_run () ;

17 }

18 catch (bad_alloc)

19 {

20 cout << "Can't allocate memory!!!" << endl;
21 cout << "Exiting" << endl;

22 }

23 catch (CORBA: :Exception &e)

24 {

25 Tango: :Except::print_exception (e);

26

27 cout << "Received a CORBA::Exception" << endl;
28 cout << "Exiting" << endl;

29 }

30

31 tg->server_cleanup();

32

33 return (0) ;

34 }

Line 1 : Include the tango.h file. This file is a master include file. It includes several other files. The list of files
included by tango.h can be found in [TangoRefMan]

Line 11 : Create the instance of the Tango::Util class (a singleton). Passing argc,argv to this method is mandatory
because the device server command line is checked when the Tango::Util object is constructed.

Line 13 : Start all the device pattern creation and initialization with the server_init() method

Line 16 : Put the server in a endless waiting loop with the server_run() method. In normal case, the process should
never returns from this line.

Line 18-22 : Catch all exceptions due to memory allocation error, display a message to the user and exit

Line 23 : Catch all standard TANGO exception which could occur during device pattern creation and initialization
Line 25 : Print exception parameters

Line 27-28 : Print an additional message

Line 31 : Cleanup the server before exiting by calling the server_cleanup() method.

The DServer::class_factory method

As described in chapter [DServer_class], C++ device server needs a class_factory() method. This method creates all
the device pattern implemented in the device server by calling their init() method. The following is an example of
a class_factory method for a device server with one implementation of the device server pattern for stepper motor
device.

#include <tango.h>
#include <steppermotorclass.h>

void Tango::DServer::class_factory ()

{

add_class (StepperMotor: :StepperMotorClass:::init ("StepperMotor"));

O 00 J o U b WK

224 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 1 : Include the Tango master include file
Line 2 : Include the steppermotorclass class definition file

Line 7 : Create the StepperMotorClass singleton by calling its init method and stores the returned pointer into the
DServer object. Remember that all classes for the device pattern implementation for the stepper motor class is defined
within a namespace called StepperMotor.

Writing the StepperMotorClass class

The class declaration file

1 #include <tango.h>

2

3 namespace StepperMotor

4 {

5

6 class StepperMotorClass : public Tango::DeviceClass
7 {

8 public:

9 static StepperMotorClass =*init (const char «);
10 static StepperMotorClass *instance();

11 ~StepperMotorClass () {_instance = NULL;}

12

13 protected:

14 StepperMotorClass (string &) ;

15 static StepperMotorClass =*_instance;

16 void command_factory();

17 void attribute_factory (vector<Tango::Attr *> &);
18

19 public:
20 void device_factory(const Tango::DevVarStringArray x);
21 }i
22

23 } /» End of StepperMotor namespace »*/
Line 1 : Include the Tango master include file

Line 3 : This class is defined within the StepperMotor namespace
Line 6 : Class StepperMotorClass inherits from Tango::DeviceClass

Line 9-10 : Definition of the init and instance methods. These methods are static and can be called even if the object
is not already constructed.

Line 11: The destructor

Line 14 : The class constructor. It is protected and can’t be called from outside the class. Only the init method allows
a user to create an instance of this class. See [Patterns] to get details about the singleton design pattern.

Line 15 : The instance pointer. It is static in order to set it to NULL during process initialization phase
Line 16 : Definition of the command_factory method
Line 17 : Definition of the attribute_factory method

Line 20 : Definition of the device_factory method

6.5. Device Servers 225

Tango Controls Documentation, Release 9.3.4

The singleton related methods

O 1o U b w N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <tango.h>

#include <steppermotor.h>
#include <steppermotorclass.h>

namespace StepperMotor

{
StepperMotorClass *StepperMotorClass::_instance = NULL;

StepperMotorClass: :StepperMotorClass (string &s):
Tango: :DeviceClass (s)

{
INFO_STREAM << "Entering StepperMotorClass constructor" << endl;

INFO_STREAM << "Leaving StepperMotorClass constructor" << endl;

StepperMotorClass *xStepperMotorClass::init (const char xname)
{
if (_instance == NULL)
{
try
{
string s (name);
_instance = new StepperMotorClass(s);
}
catch (bad_alloc)
{

throw;

}

return _instance;

StepperMotorClass *StepperMotorClass::instance ()
{
if (_instance == NULL)
{
cerr << "Class is not initialised !!" << endl;
exit (-1);
}
return _instance;

}

Line 1-4 : include files: the Tango master include file (tango.h), the StepperMotorClass class definition file (stepper-
motorclass.h) and the StepperMotor class definition file (steppermotor.h)

Line 6 : Open the StepperMotor namespace.

Line 9 : Initialize the static _instance field of the StepperMotorClass class to NULL

Line 11-18 : The class constructor. It takes an input parameter which is the controlled device class name. This

226

Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

parameter is passed to the constructor of the DeviceClass class. Otherwise, the constructor does nothing except
printing a message

Line 20-35 : The init method. This method needs an input parameter which is the controlled device class name
(StepperMotor in this case). This method checks is the instance is already constructed by testing the _instance data
member. If the instance is not constructed, it creates one. If the instance is already constructed, the method simply
returns a pointer to it.

Line 37-45 : The instance method. This method is very similar to the init method except that if the instance is not
already constructed. the method print a message and abort the process.

As you can understand, it is not possible to construct more than one instance of the StepperMotorClass (it is a singleton)
and the init method must be called prior to any other method.

The command_factory method

Within our example, the stepper motor device supports two commands which are called DevReadPosition and De-
vReadDirection. These two command takes a Tango::DevLong argument as input and output parameter. The first
command is created using the inheritance model and the second command is created using the template command
model.

1 void StepperMotorClass::command_factory ()

2 {

3 command_list.push_back (new DevReadPositionCmd ("DevReadPosition",
4 Tango: :DEV_LONG,

5 Tango: :DEV_LONG,

6 "Motor number (0-
Ty,

7 "Motor position"));
8

9 command_list.push_back(
10 new TemplCommandInOut<Tango::DevlLong, Tango: :DevLong>
11 ((const char =) "DevReadDirection",
12 static_cast<Tango: :Lg_CmdMethPtr_Lg>
13 (&StepperMotor: :dev_read_direction),
14 static_cast<Tango::StateMethPtr>
15 (&StepperMotor: :direct_cmd_allowed))
16)i
17 }

Line 4 : Creation of one instance of the DevReadPositionCmd class. The class is created with five arguments which
are the command name, the command type code for its input and output parameters and two strings which are the
command input and output parameters description. The pointer returned by the new C++ keyword is added to the
vector of available command.

Line 10-14 : Creation of the object used for the DevReadDirection command. This command has one input and
output parameter. Therefore the created object is an instance of the TemplCommandInOut class. This class is a C++
template class. The first template parameter is the command input parameter type, the second template parameter is
the command output parameter type. The second TemplCommandInOut class constructor parameter (set at line 13) is
a pointer to the method to be executed when the command is requested. A casting is necessary to store this pointer
as a pointer to a method of the DeviceImpl class®. The third TemplCommandInOut class constructor parameter (set
at line 15) is a pointer to the method to be executed to check if the command is allowed. This is necessary only if the
default behavior (command always allowed) does not fulfill the needs. A casting is necessary to store this pointer as
a pointer to a method of the Devicelmpl class. When a command is created using the template command method, the
input and output parameters type are determined from the template C++ class parameters.

3 The StepperMotor class inherits from the DeviceImpl class and therefore is a DeviceImpl

6.5. Device Servers 227

Tango Controls Documentation, Release 9.3.4

The device_factory method

The device_factory method has one input parameter. It is a pointer to Tango::DevVarStringArray data which is the
device name list for this class and the instance of the device server process. This list is fetch from the Tango database.

1 void StepperMotorClass::device_factory(const Tango::_DevVarStringArray,,
—xdevlist_ptr)

2 {

3

4 for (long i = 0;i < devlist_ptr->length();i++)

5 {

6 DEBUG_STREAM << "Device name : " << (xdevlist_ptr)[i] << endl;
5

8 device_list.push_back (new StepperMotor (this, (xdevlist_ptr) [i]));
. 9

9 if (Tango::Util::_UseDb == true)
10 export_device (device_list.back());
11 else
12 export_device (device_list.back (), (xdevlist_ptr[i]));
13 }
14 }

Line 4 : A loop for each device

Line 8 : Create the device object using a StepperMotor class constructor which needs two arguments. These two
arguments are a pointer to the StepperMotorClass instance and the device name. The pointer to the constructed object
is then added to the device list vector

Line 10-13 : Export device to the outside world using the export_device method of the DeviceClass class.

The attribute_factory method

The rule of this method is to fulfill a vector of pointer to attributes. A reference to this vector is passed as argument to
this method.

1 void StepperMotorClass::attribute_factory (vector<Tango::Attr x> &att_

2 {

3 att_list.push_back (new PositionAttr());

4

5 Tango: :UserDefaultAttrProp def_prop;

6 def_prop.set_label ("Set the motor position");
7 def_prop.set_format ("scientific;setprecision(4)");
8 Tango: :Attr x*at = new SetPositionAttr();

9 at->set_default_properties (def_prop);
10 att_list.push_back(at);
11
12 att_list.push_back (new DirectcionAttr());
13 }

Line 3 : Create the PositionAttr class and store the pointer to this object into the attribute pointer vector.

Line 5-7 : Create a Tango::UserDefaultAttrProp instance and set the label and format properties default values in this
object

Line 8 : Create the SetPositionAttr attribute.

228 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 9 : Set attribute user default value with the set_default_properties() method of the Tango::Attr class.
Line 10 : Store the pointer to this object into the attribute pointer vector.
Line 12 : Create the DirectionAttr class and store the pointer to this object into the attribute pointer vector.

Please, note that in some rare case, it is necessary to add attribute to this list during the device server life cycle.
This attribute_factory() method is called once during device server start-up. A method add_attribute() of the Devi-
celmpl class allows the user to add a new attribute to the attribute list outside of this attribute_factory() method. See
[TangoRefMan] for more information on this method.

The DevReadPositionCmd class

The class declaration file

1 #include <tango.h>

2

3 namespace StepperMotor

4 {

5

6 class DevReadPositionCmd : public Tango::Command

7 {

8 public:

9 DevReadPositionCmd (const char =*,Tango::CmdArgType,
10 Tango: :CmdArgType,
11 const char #*,const char *);
12 ~DevReadPositionCmd () {};
13
14 virtual bool is_allowed (Tango::DeviceImpl %, const CORBA::Any §&);
15 virtual CORBA::Any =*execute (Tango::DeviceImpl %, const CORBA::Any &
=)
16 }i
17

18 } /* End of StepperMotor namespace */

Line 1 : Include the tango master include file

Line 3 : Open the StepperMotor namespace.

Line 6 : The DevReadPositionCmd class inherits from the Tango::Command class
Line 9 : The constructor

Line 12 : The destructor

Line 14 : The definition of the is_allowed method. This method is not necessary if the default behavior implemented
by the default is_allowed method fulfill the requirements. The default behavior is to always allows the command
execution (always return true).

Line 15: The definition of the execute method

The class constructor

The class constructor does nothing. It simply invoke the Command constructor by passing it its five arguments which
are:

1. The command name

6.5. Device Servers 229

Tango Controls Documentation, Release 9.3.4

2. The command input type code

3. The command output type code

4. The command input parameter description
5. The command output parameter description

With this 5 parameters command class constructor, the command display level is not specified. Therefore it is set
to its default value (OPERATOR). If the command does not have input or output parameter, it is not possible to
use the Command class constructor defined with five parameters. In this case, the command constructor execute the
Command class constructor with three elements (class name, input type, output type) and set the input or output
parameter description fields with the set_in_type_desc or set_out_type_desc Command class methods. To set the
command display level, it is possible to use a 6 parameters constructor or it is also possible to set it in the constructor
code with the set_disp_level method. Many Command class constructors are defined. See [TangoRefMan] for a
complete list.

The is_allowed method

In our example, the DevReadPosition command is allowed only if the device is in the ON state. This method receives
two argument which are a pointer to the device object on which the command must be executed and a reference to
the command input Any object. This method returns a boolean which must be set to true if the command is allowed.
If this boolean is set to false, the DeviceClass command_handler method will automatically send an exception to the
caller.

1 bool DevReadPositionCmd::is_allowed (Tango: :DeviceImpl *device,
2 const CORBA::Any &in_any)
3 {

4 if (device->get_state() == Tango: :0N)

5 return true;

6 else

7 return false;

8 }

Line 4 : Call the get_state method of the Devicelmpl class which simply returns the device state
Line 5 : Authorize command if the device state is ON

Line 7 : Refuse command execution in all other cases.

The execute method

This method receives two arguments which are a pointer to the device object on which the command must be executed
and a reference to the command input Any object. This method returns a pointer to an any object which must be
initialized with the data to be returned to the caller.

1 CORBA: :Any *DevReadPositionCmd: :execute (

2 Tango: :DeviceImpl xdevice,

3 const CORBA::Any &in_any)

4 {

5 INFO_STREAM << "DevReadPositionCmd::execute(): arrived" << endl;

6 Tango: :DevlLong motor;

-

8 extract (in_any,motor) ;

9 return insert (
10 (static_cast<StepperMotor =*>(device))->dev_read_position (motor));

230 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

11 }

Line 8 : Extract incoming data from the input any object using a Command class extract helper method. If the type of
the data in the Any object is not a Tango::DevLong, the extract method will throw an exception to the client.

Line 9 : Call the stepper motor object method which execute the DevReadPosition command and insert the returned
value into an allocated Any object. The Any object allocation is done by the insert method which return a pointer to
this Any.

The PositionAttr class

The class declaration file

1 #include <tango.h>

2 #include <steppermotor.h>

3

4 namespace StepperMotor

5 {

6

7

8 class PositionAttr: public Tango::Attr

9 {

10 public:

11 PositionAttr () :Attr ("Position",

12 Tango: :DEV_LONG,

13 Tango: :READ_WITH_WRITE,

14 "SetPosition") {};

15 ~PositionAttr () {};

16

17 virtual void read(Tango::DeviceImpl xdev,Tango::Attribute &att)
18 {(static_cast<StepperMotor x> (dev))->read_Position(att);}

19 virtual bool is_allowed(Tango: :DeviceImpl =*dev,Tango::AttReqType ty)
20 {return (static_cast<StepperMotor =*>(dev))->is_Position_allowed(ty);}
21 }s
22
23 } /+» End of StepperMotor namespace =*/
24

25 #endif // _STEPPERMOTORCLASS_H

Line 1-2 : Include the tango master include file and the steppermotor class definition include file
Line 4 : Open the StepperMotor namespace.

Line 8 : The PosiitionAttr class inherits from the Tango::Attr class

Line 11-14 : The constructor with 4 arguments

Line 15 : The destructor

Line 17 : The definition of the read method. This method forwards the call to a StepperMotor class method called
read_Position()

Line 19 : The definition of the is_allowed method. This method is not necessary if the default behaviour implemented
by the default is_allowed method fulfills the requirements. The default behaviour is to always allows the attribute read-
ing (always return true). This method forwards the call to a StepperMotor class method called is_Position_allowed()

6.5. Device Servers 231

Tango Controls Documentation, Release 9.3.4

The class constructor

The class constructor does nothing. It simply invoke the Attr constructor by passing it its four arguments which are:
1. The attribute name
2. The attribute data type code
3. The attribute writable type code
4. The name of the associated write attribute

With this 4 parameters Attr class constructor, the attribute display level is not specified. Therefore it is set to its default
value (OPERATOR). To set the attribute display level, it is possible to use in the constructor code the set_disp_level
method. Many Attr class constructors are defined. See [TangoRefMan] for a complete list.

This Position attribute is a scalar attribute. For spectrum attribute, instead of inheriting from the Attr class, the class
must inherits from the SpectrumAttr class. Many SpectrumAttr class constructors are defined. See [TangoRefMan]
for a complete list.

For Image attribute, instead of inheriting from the Attr class, the class must inherits from the ImageAttr class. Many
ImageAttr class constructors are defined. See [TangoRefMan] for a complete list.

The is_allowed method

This method receives two argument which are a pointer to the device object to which the attribute belongs to and
the type of request (read or write). In the PositionAttr class, this method simply forwards the request to a method of
the StepperMotor class called is_Position_allowed() passing the request type to this method. This method returns a
boolean which must be set to true if the attribute is allowed. If this boolean is set to false, the Devicelmpl read_attribute
method will automatically send an exception to the caller.

The read method

This method receives two arguments which are a pointer to the device object to which the attribute belongs to and
a reference to the corresponding attribute object. This method forwards the request to a StepperMotor class called
read_Position() passing it the reference on the attribute object.

The StepperMotor class

The class declaration file

1 #include <tango.h>

2

3 #define AGSM_MAX_MOTORS 8 // maximum number of motors per device
4

5 namespace StepperMotor

6

5

8 class StepperMotor: public TANGO_BASE_CLASS

9 |
10 public
11 StepperMotor (Tango: :DeviceClass *,string &);
12 StepperMotor (Tango: :DeviceClass «,const char x);
13 StepperMotor (Tango: :DeviceClass #*,const char x,const char «);

232 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

14 ~StepperMotor () {};

15

16 DevlLong dev_read_position (DevLong) ;

17 DevLong dev_read_direction (DevLong) ;

18 bool direct_cmd_allowed(const CORBA::Any &);
19

20 virtual Tango::DevState dev_state();

21 virtual Tango::ConstDevString dev_status();
22

23 virtual void always_executed_hook () ;

24

25 virtual void read_attr_hardware (vector<long> &attr_list);
26 virtual void write_attr_hardware (vector<long> &attr_list);
27

28 void read_position(Tango::Attribute &);

29 bool is_Position_allowed(Tango: :AttReqType req);
30 void write_SetPosition (Tango::WAttribute &);
31 void read_Direction(Tango::Attribute &);

32

33 virtual void init_device();

34 virtual void delete_device();

35

36 void get_device_properties();

37

38 protected

39 long axis[AGSM_MAX_MOTORS];

40 DevLong position[AGSM_MAX_MOTORS];

41 DevLong direction[AGSM_MAX_MOTORS];

42 long state[AGSM_MAX_ MOTORS];

43

44 Tango: :Devlong xattr_Position_read;

45 Tango: :Devlong *attr_Direction_read;

46 Tango: :DevLong attr_SetPosition_write;

47

48 Tango: :DevLong min;

49 Tango: :DevLong max;

50

51 Tango: :DevLong #*ptr;

52 };

53

54 '} /+ End of StepperMotor namespace =*/
Line 1 : Include the Tango master include file

Line 5 : Open the StepperMotor namespace.

Line 8 : The StepperMotor class inherits from a Tango base class
Line 11-13 : Three different object constructors

Line 14 : The destructor which calls the delete_device() method

Line 16 : The method to be called for the execution of the DevReadPosition command. This method must be declared
as virtual if it is needed to redefine it in a class inheriting from StepperMotor. See chapter [Inheriting] for more details
about inheriting.

Line 17 : The method to be called for the execution of the DevReadDirection command

6.5. Device Servers 233

Tango Controls Documentation, Release 9.3.4

Line 18 : The method called to check if the execution of the DevReadDirection command is allowed. This method
is necessary because the DevReadDirection command is created using the template command method and the default
behavior is not acceptable

Line 20 : Redefinition of the dev_state. This method is used by the State command
Line 21 : Redefinition of the dev_status. This method is used by the Status command

Line 23 : Redefinition of the always_executed_hook method. This method is the place to code mandatory action which
must be executed prior to any command.

Line 25-31 : Attribute related methods

Line 32 : Definition of the init_device method.

Line 33 : Definition of the delete_device method

Line 35 : Definition of the get_device_properties method

Line 38-50 : Data members.

Line 43-44 : Pointers to data for readable attributes Position and Direction
Line 45 : Data for the SetPosition attribute

Line 47-48 : Data members for the two device properties

The constructors

Three constructors are defined here. It is not mandatory to defined three constructors. But at least one is mandatory.
The three constructors take a pointer to the StepperMotorClass instance as first parameter*. The second parameter is
the device name as a C++ string or as a classical pointer to char array. The third parameter necessary only for the third
form of constructor is the device description string passed as a classical pointer to a char array.

#include <tango.h>
#include <steppermotor.h>

{

StepperMotor: :StepperMotor (Tango: :DeviceClass xcl,string &s)
: TANGO_BASE_CLASS (cl,s.c_str())
9 {
10 init_device () ;
11}
12
13 StepperMotor::StepperMotor (Tango: :DeviceClass *cl,const char =xs)
14 :TANGO_BASE_CLASS (cl, s)

1
2
3
4 namespace StepperMotor
5
6
7
8

15 |

16 init_device();
17 }

18

19 StepperMotor::StepperMotor (Tango: :DeviceClass *cl,const char xs,const,
—char =xd)

20 :TANGO_BASE_CLASS(cl,s,d)

21 |

22 init_device();

“# The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

234 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

23 1}

24

25 wvoid StepperMotor::init_device ()

26

27 cout << "StepperMotor::StepperMotor () create " << device_name << endl;
28

29 long i;

30

31 for (i=0; i< AGSM_MAX MOTORS; i++)

32 {

33 axis[i] =
34 position|
35 direction
36 }

37

38 ptr = new Tango::DevLong[10];
39

40 get_device_properties|();

41}

42

43 void StepperMotor::delete_device ()
44

45 delete [] ptr;

46 }

0;
i] = 0;
(i1 = 0;

Line 1-2 : Include the Tango master include file (tango.h) and the StepperMotor class definition file (steppermotor.h)
Line 4 : Open the StepperMotor namespace

Line 7-11 : The first form of the class constructor. It execute the Tango base class constructor with the two parameters.
Note that the device name passed to this constructor as a C++ string is passed to the Tango::Devicelmpl constructor as
a classical C string. Then the init_device method is executed.

Line 13-17 : The second form of the class constructor. It execute the Tango base class constructor with its two
parameters. Then the init_device method is executed.

Line 19-23: The third form of constructor. Again, it execute the Tango base class constructor with its three parameters.
Then the init_device method is executed.

Line 25-41 : The init_device method. All the device data initialization is done in this method. The device properties
are also retrieved from database with a call to the get_device_properties method at line 40. The device data member
called ptr is initialized with allocated memory at line 38. It is not needed to have this pointer, it has been added only
for educational purpose.

Line 43-46 : The delete_device method. The rule of this method is to free memory allocated in the init_device method.
In our case , only the device data member ptr is allocated in the init_device method. Therefore, its memory is freed
at line 45. This method is called by the automatically added Init command before it calls the init_device method. It is
also called by the device destructor.

The methods used for the DevReadDirection command

The DevReadDirection command is created using the template command method. Therefore, there is no specific
class needed for this command but only one object of the TemplCommandInOut class. This command needs two
methods which are the dev_read_direction method and the direct_cmd_allowed method. The direct_cmd_allowed
method defines here implements exactly the same behavior than the default one. This method has been used only for

6.5. Device Servers 235

Tango Controls Documentation, Release 9.3.4

pedagogic issue. The dev_read_direction method will be executed by the execute method of the TemplCommandInOut
class. The direct_cmd_allowed method will be executed by the is_allowed method of the TemplCommandInOut class.

1 DevLong StepperMotor::dev_read_direction (DevlLong axis)

2 {

3 if (axis < 0 || axis > AGSM_MAX_MOTORS)

4 {

5 WARNING_STREAM << "Steppermotor::dev_read_direction(): axis out,
—~of range !";

6 WARNING_STREAM << endl;

7 TangoSys_OMemStream o;

8

9 0 << "Axis number " << axis << " out of range" << ends;
10 throw_exception ("StepperMotor_OutOfRange",
11 o.str (),
12 "StepperMotor: :dev_read_direction");
13 }

14

15 return direction[axis];

16 }

17

18

19 bool StepperMotor::direct_cmd_allowed(const CORBA::Any &in_data)
20 {

21 INFO_STREAM << "In direct_cmd_allowed () method" << endl;
22

23 return true;

24 }

Line 1-16 : The dev_read_direction method
Line 5-12 : Throw exception to client if the received axis number is out of range

Line 7 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined in improve
portability across platform. For Unix like operating system, it is a ostrtream type. For operating system with a full
implementation of the standard library, it is a ostringstream type.

Line 19-24 : The direct_cmd_allowed method. The command input data is passed to this method in case of it is needed
to take the decision. This data is still packed into the CORBA Any object.

The methods used for the Position attribute

To enable reading of attributes, the StepperMotor class must re-define two or three methods called
read_attr_hardware(), read_<Attribute_name>() and if necessary a method called

is_<Attribute_name>_allowed(). The aim of the first one is to read the hardware. It will be called only once at the
beginning of each read_attribute CORBA call. The second method aim is to build the exact data for the wanted
attribute and to store this value into the Attribute object. Special care has been taken in order to minimize the number
of data copy and allocation. The data passed to the Attribute object as attribute value is passed using pointers. It must
be allocated by the method’ and the Attribute object will not free this memory. Data members called
attr_<Attribute_name>_read are foreseen for this usage. The read_attr_hardware() method receives a vector of long
which are indexes into the main attributes vector of the attributes to be read. The read_Position() method receives a
reference to the Attribute object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the attribute
reading. In some cases, some attributes can be read only if some conditions are met. If this method returns true, the
read_<Attribute_name>() method will be called. Otherwise, an error will be generated for the attribute. This method

3 It can also be data declared as object data members or memory declared as static

236 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

receives one argument which is an emumeration describing the attribute request type (read or write). In our example,
the reading of the Position attribute is allowed only if the device state is ON.

1 void StepperMotor::read_ attr_hardware (vector<long> &attr_list)
2 {

3 INFO_STREAM << "In read_attr_hardware for " << attr_list.size();
4 INFO_STREAM << " attribute(s)" << endl;

5

6 for (long i1 = 0;1i < attr_list.size();i++)

7 {

8 string attr_name;

9 attr_name = dev_attr->get_attr_by_ind(attr_list[i]) .get_name();
10

11 if (attr_name == "Position")

12 {

13 attr_Position_read = & (position([0]);
14 }

15 else if (attr_name == "Direction")

16 {

17 attr_Direction_read = &(direction[0]);
18 }

19 }
20 }
21
22 void read_Position(Tango::Attribute &att)
23 {
24 att.set_value (attr_Position_read);
25 }
26
27 bool is_Position_allowed (Tango: :AttReqType req)
28 {
29 if (req == Tango::WRITE_REQ)

30 return false;

31 else

32 {

33 if (get_state() == Tango::0N)

34 return true;

35 else

36 return false;

37 }

38 }

Line 6 : A loop on each attribute to be read

Line 9 : Get attribute name

Line 11 : Test on attribute name

Line 13 : Read hardware (pretty simple in our case)

Line 24 : Set attribute value in Attribute object using the set_value() method. This method will also initializes the
attribute quality factor to Tango::ATTR_VALID if no alarm level are defined and will set the attribute returned date. It
is also possible to use a method called set_value_date_quality() which allows the user to set the attribute quality factor
as well as the attribute date.

Line 33 : Test on device state

6.5. Device Servers 237

Tango Controls Documentation, Release 9.3.4

The methods used for the SetPosition attribute

To enable writing of attributes, the StepperMotor class must re-define one or two methods called
write_<Attribute_name>() and if necessary a method called is_<Attribute_name>_allowed(). The aim of the first
one is to write the hardware. The write_Position() method receives a reference to the WAttribute object. The value to
write is in this WAttribute object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the attribute
writing. In some cases, some attributes can be write only if some conditions are met. If this method returns true, the
write_<Attribute_name>() method will be called. Otherwise, an error will be generated for the attribute. This method
receives one argument which is an emumeration describing the attribute request type (read or write). For read/write
attribute, this method is the same for reading and writing. The input argument value makes the difference.

For our example, it is always possible to write the SetPosition attribute. Therefore, the StepperMotor class only defines
a write_SetPosition() method.

1 wvoid StepperMotor::write_SetPosition (Tango::WAttribute &att)

2 A

3 att.get_write_value(sttr_SetPosition_write);

4

5 DEBUG_STREAM << "Attribute SetPosition value = ";
6 DEBUG_STREAM << attr_SetPosition_write << endl;

7

8 position[0] = attr_SetPosition_write;

9 1}
10
11 void StepperMotor::write_attr_hardware (vector<long> &attr_list)
12
13
14 1}

Line 3 : Retrieve new attribute value
Line 5-6 : Send some messages using Tango Logging system

Line 8 : Set the hardware (pretty simple in our case)

Line 11 - 14: The write_attr_hardware() method.

In our case, we don’t have to do anything in the write_attr_hardware() method. It is coded here just for educational
purpose. When its not needed, this method has a default implementation in the Tango base class and it is not
mandatory to declare and defin it in your own Tango class

Retrieving device properties

Retrieving properties is fairly simple with the use of the database object. Each Tango device is an aggregate with a Db-
Device object (see figure [Device pattern figure]). This has been grouped in a method called getr_device_properties().
The classes and methods of the Dbxxx objects are described in the Tango API documentation.

1 void DocDs::get_device_property ()
2 {

3 Tango: :DbData data;

4 data.push_back (DbDatum ("Max")) ;
5 data.push_back (DbDatum ("Min")) ;
6
7
8

get_db_device () —>get_property (data) ;

238 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

9 if (data[0].is_empty()==false)
10 data[0] >> max;

11 if (datall].is_empty()==false)
12 datal[l] >> minj;

13 }

Line 4-5 : Two DbDatum (one per property) are stored into a DbData object
Line 7 : Call the database to retrieve properties value

Line 9-10 : If the Max property is defined in the database, extract its value from the DbDatum object and store it in a
device data member

Line 11-12 : If the Min property is defined in the database, extract its value from the DbDatum object and store it in a
device data member

The remaining methods

The remaining methods are the dev_state, dev_status, always_executed_hook, dev_read_position and read_Direction()
methods. The dev_state method parameters are fixed. It does not receive any input parameter and must return a
Tango_DevState data type. The dev_status parameters are also fixed. It does not receive any input parameter and must
return a Tango string. The always_executed_hook receives nothing and return nothing. The dev_read_position method
input parameter is the motor number as a long and the returned parameter is the motor position also as a long data
type. The read_Direction() method is the method for reading the Direction attribute.

1 DevLong StepperMotor::dev_read_position (DevLong axis)

2 {

3

4 if (axis < 0 || axis > AGSM_MAX_ MOTORS)

5 {

6 WARNING_STREAM << "Steppermotor::dev_read_position(): axis out,
—~of range !";

7 WARNING_STREAM << endl;

8

9 TangoSys_OMemStream o;

10

11 0 << "Axis number " << axis << " out of range" << ends;
12 throw_exception ("StepperMotor_OutOfRange",

13 o.str (),

14 "StepperMotor: :dev_read_position");

15 }

16

17 return positionlaxis];

18 }

19
20 void always_executed_hook ()
21 {
22 INFO_STREAM << "In the always_executed_hook method << endl;
23 }
24

25 Tango_DevState StepperMotor::dev_state()

26 {

27 INFO_STREAM << "In StepperMotor state command" << endl;

28 return DevicelImpl::dev_state();

29 }

6.5. Device Servers 239

Tango Controls Documentation, Release 9.3.4

30

31 Tango_DevString StepperMotor::dev_status()
32 {

33 INFO_STREAM << "In StepperMotor status command" << endl;
34 return DeviceImpl::dev_status();

35 }

36

37 void read_Direction(Tango::Attribute att)
38 {

39 att.set_value (attr_Direction_read);

40 }

Line 1-18 : The dev_read_position method
Line 6-14 : Throw exception to client if the received axis number is out of range

Line 9 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined in improve
portability across platform. For Unix like operating system, it is a ostrtream type. For operating system with a full
implementation of the standard library, it is a ostringstream type.

Line 20-23 : The always_executed_hook method. It does nothing. It has been included here only as pedagogic usage.

Line 25-29 : The dev_state method. It does exactly what the default dev_state does. It has been included here only as
pedagogic usage

Line 31-35 : The dev_status method. It does exactly what the default dev_status does. It has been included here only
as pedagogic usage

Line 37-40 : The read_Direction method. Simply set the Attribute object internal value

Device server under Windows

Two kind of programs are available under Windows. These kinds of programs are called console application or
Windows application. A console application is started from a MS-DOS window and is very similar to classical UNIX
program. A Windows application is most of the time not started from a MS-DOS window and is generally a graphical
application without standard input/output. Writing a device server in a console application is straight forward following
the rules described in the previous sub-chapters. Writing a device server in a Windows application needs some changes
detailed in the following sub-chapters.

The Tango device server graphical interface

Within the Windows operating system, most of the running application has a window user interface. This is also true
for the Windows Tango device server. Using or not this interface is up to the device server programmer. The choice is
done with an argument to the server_init() method of the Tango::Util class. This interface is pretty simple and is based
on three windows which are :

¢ The device server main window
¢ The device server console window

* The device server help window

The device server main window

This window looks like :

240 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Fig. 12: Figure 6.7: Tango device server main window

Four menus are available in this window. The File menu allows the user to exit the device server. The View menu
allows you to display/hide the device server console window. The Debug menu allows the user to change the server
output verbose level. All the outputs goes to the console window even if it is hidden. The Help menu displays the help
window. The device server name is displayed in the window title. The text displayed at the bottom of the window has
a default value (the one displayed in this window dump) but may be changed by the device server programmer using
the set_main_window_text() method of the Tango::Util class. If used, this method must be called prior to the call of
the server_init() method. Refer to [TangoRefMan] for a complete description of this method.

The console window

This window looks like :

It simply displays all the logging** message when a console target is used in the device server.

The help window

This window looks like :

This window displays
* The device server name
* The Tango library release
e The Tango IDL definition release

e The device server release. The device server programmer may set this release number using the
set_server_version() method of the Tango::Util class. If used, this must be done prior to the call of the
server_init() method. If the set_server_version() method is not used, x.y is displays as version number. Re-
fer to [TangoRefMan] for a complete description of this method.

MFC device server

There is no main function within a classical MFC program. Most of the time, your application is represented by one
instance of a C++ class which inherits from the MFC CWinApp class. This CWinApp class has several methods that
you may overload in your application class. For a device server to run correctly, you must overload two methods of
the CWinApp class. These methods are the InitInstance() and Exitlnstance() methods. The rule of these methods is
obvious following their names.

Remember that if the Tango device server graphical user interface is used, you must link your device server
with the Tango windows resource file. This is done by adding the Tango resource file to the Project Set-
tings/Link/Input/Object, library modules window in VC++.

The Initinstance method

The code to be added here is the equivalent of the code written in a classical main() function. Don’t forget to add the
tango.h file in the list of included files.

6.5. Device Servers 241

Tango Controls Documentation, Release 9.3.4

1 BOOL FluidsApp::InitInstance ()

2|

3 AfxFEnableControlContainer();

4

5 // Standard initialization

6 // If you are not using these features and wish to reduce the size
7 // of your final executable, you should remove from the following
8 // the specific initialization routines you do not need.

9

10 #ifdef _AFXDLL

11 Enable3dControls () ; // Call this when using MFC in a shared,
—DLL

12 #else

13 Enable3dControlsStatic(); // Call this when linking to MFC_,
—statically

14 #endif

15 Tango::Util =tg;

16 try

17 {

18

19 tg = Tango::Util::init (m_hInstance,m_nCmdShow) ;
20
21 tg->server_init (true);
22
23 tg->server_run();
24
25 }
26 catch (bad_alloc)
27 {
28 MessageBox ((HWND) NULL, "Memory error", "Command line",MB_ICONSTOP) ;
29 return (FALSE) ;

30 }

31 catch (Tango::DevFailed &e)

32 {

33 MessageBox ((HWND) NULL, ,e.errors[0] .desc.in (), "Command line",MB_
,ICONSTOP) ;

34 return (FALSE) ;

35 }

36 catch (CORBA: :Exception &)

37 {

38 MessageBox ((HWND) NULL, "Exception CORBA", "Command line",MB_
—~ICONSTOP) ;

39 return (FALSE) ;

40 }

41

42 m_pMainWnd = new CWnd;

43 m_pMainWnd->Attach (tg->get_ds_main_window ()) ;

44

45 return TRUE;

46 }

Line 19 : Initialise Tango system. This method also analises the argument used in command line.

Line 21 : Create Tango classes requesting the Tango Windows graphical interface to be used

242 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 23 : Start Network listener. Note that under NT, this call returns in the contrary of UNIX like operating system.

Line 26-30 : Display a message box in case of memory allocation error and leave method with a return value set to
false in order to stop the process

Line 31-35 : Display a message box in case of error during server initialization phase.

Line 36-40 : Display a message box in case of error other than memory allocation. Leave method with a return value
set to false in order to stop the process.

Line 37-38 : Create a MFC main window and attach the Tango graphical interface main window to this MFC window.

The Exitinstance method

This method is called when the application is stopped. For Tango device server, its rule is to destroy the Tango::Util
singleton if this one has been correctly constructed.

1 int FluidsApp::ExitInstance ()

2 {

3 bool del = true;

4

5 try

6 {

7 Tango::Util *tg = Tango::Util::instance();
8 }

9 catch (Tango: :DevFailed)

10 {
11 del = false;
12 }
13
14 if (del == true)
15 delete (Tango::Util::instance());
16
17 return CWinApp::ExitInstance();
18 }

Line 7 : Try to retrieve the Tango::Util singleton. If this one has not been constructed correctly, this call will throw an
exception.

Line 9-12 : Catch the exception in case of incomplete Tango::Util singleton construction
Line 14-15 : Delete the Tango::Util singleton. This will unregister the Tango device server from the Tango database.
Line 17 : Execute the ExitInstance method of the CWinApp class.

If you don’t want to use the Tango device server graphical interface, do not pass any parameter to the server_init()
method and instead of the code display in lines 37 and 38 in the previous example of the InitInstance() method, use
your own code to initialize your own application.

Example of how to build a Windows device server MFC based

This sub-chapter gives an example of what it is needed to do to build a MFC Windows device server. Rather than
being a list of actions to strictly follow, this is some general rules of how using VC++ to build a Tango device server
using MFC.

1. Create your device server using Pogo. For a class named MyMotor, the following files will be needed :
class_factory.cpp, MyMotorClass.h, MyMotorClass.cpp, MyMotor.h and MyMotor.cpp.

6.5. Device Servers 243

Tango Controls Documentation, Release 9.3.4

On a Windows computer running VC++, create a new project of type “MFC app Wizard (exe)” using static MFC
libs. Ask for a dialog based project without ActiveX controls.

Copy the five files generated by Pogo to the Windows computer and add them to your project

Remove the dialog window files (xxxDlg.cpp and xxxDlg.h), the Resource include file and the resource script
file from your project

Add #include <stdafx.h> as first line of the include files list in class_factory.cpp, MyMotorClass.cpp and My-
Motor.cpp file. Also add your own directory and the Tango include directory to the project pre-compiler include
directories list.

Enable RTTI in your project settings (see chapter [Compiling NT])
Change your application class:
1. Add the definition of an ExitInstance method in the declaration file. (xxx.h file)

2. Remove the include of the dialog window file in the xxx.cpp file and add an include of the Tango master
include files (tango.h)

3. Replace the InitInstance() method as described in previous sub-chapter. (xx.cpp file)
4. Add an Exitlnstance() method as described in previous sub-chapter (xxx.cpp file)

Add all the libraries needed to compile a Tango device server (see chapter [Compiling NT]) and the Tango
resource file to the linker Object/Libraries modules.

Win32 application

Even if it is more natural to use the C++ structure of the MFC class to write a Tango device server, it is possible to
write a device server as a Win32 application. Instead of having a main() function as the application entry point, the
operating system, provides a WinMain() function as the application entry point. Some code must be added to this
WinMain function in order to support Tango device server. Don’t forget to add the tango.h file in the list of included
files. If you are using the project files generated by Pogo, don’t forget to change the linker SUBSYSTEM option to
Windows (Under Linker/System in the project properties window).

1 int APIENTRY WinMain (HINSTANCE hInstance,
2 HINSTANCE hPrevInstance,
3 LPSTR lpCmdLine,
4 int nCmdShow)
5 {
6 MSG msg;
7 Tango::Util =tg;
8
9 try
10 {
11 tg = Tango::Util::init (hInstance, nCmdShow) ;
12
13 string txt;
14 txt = "Blabla first line\n";
15 txt = txt + "Blabla second line\n";
16 txt = txt + "Blabla third line\n";
17 tg->set_main_window_text (txt);
18 tg->set_server_version("2.2");
19
20 tg->server_init (true);
21
244 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

22 tg->server_run () ;

23

24 }

25 catch (bad_alloc)

26 {

27 MessageBox ((HWND) NULL, "Memory error", "Command line",MB_ICONSTOP) ;
28 return (FALSE);

29 }

30 catch (Tango::DevFailed &e)

31 {

32 MessageBox ((HWND) NULL,e.errors[0] .desc.in (), "Command line",MB_
—ICONSTOP) ;

33 return (FALSE);

34 }

35 catch (CORBA: :Exception &)

36 {

37 MessageBox ((HWND) NULL, "Exception CORBA", "Command line",MB_
, ICONSTOP) ;

38 return (FALSE) ;

39 }

40

41 while (GetMessage (&msg, NULL, 0, 0))
42 {

43 TranslateMessage (&msqg) ;

44 DispatchMessage (&msq) ;

45 }

46

47 delete tg;

48

49 return msg.wParam;

50 }

Line 11 : Create the Tango::Util singleton

Line 13-18 : Set parameters for the graphical interface

Line 20 : Initialize Tango device server requesting the display of the graphical interface
Line 22 : Run the device server

Line 25-39 : Display a message box for all the kinds of error during Tango device server initialization phase and exit
WinMain function.

Line 41-45 : The Windows message loop
Line 47 : Delete the Tango::Util singleton. This class destructor unregisters the device server from the Tango database.

Remember that if the Tango device server graphical user interface is used, you must add the Tango windows
resource file to your project.

If you don’t want to use the tango device server graphical user interface, do not use any parameter in the call of the
server_init() method and do not link your device server with the Tango Windows resource file.

Device server as service

With Windows, if you want to have processes which survive to logoff sequence and/or are automatically started during
computer startup sequence, you have to write them as service. It is possible to write Tango device server as service.

6.5. Device Servers 245

Tango Controls Documentation, Release 9.3.4

You need to

1. Write a class which inherits from a pre-written Tango class called NTService. This class must have a start
method.

2. Write a main function following a predefined skeleton.

The service class

It must inherits from the NTService class and defines a start method. The NTService class must be constructed with
one argument which is the device server executable name. The start method has three arguments which are the number
of arguments passed to the method, the argument list and a reference to an object used to log info in the NT event
system. The first two args must be passed to the Tango::Util::init method and the last one is used to log error or info
messages. The class definition file looks like

1 #include <tango.h>

2 #include <ntservice.h>

3

4 class MYService: public Tango::NTService

5 {

6 public:

7 MYService (char «);

8

9 void start (int, char =%, Tango::NTEventLogger x);
10 bi

Line 1-2 : Some include files
Line 4 : The MY Service class inherits from Tango.:NTService class

Line 7 : Constructor with one parameter

Line 9 : The start() method
The class source code looks like

1 #include <myservice.h>

2 #include <tango.h>

3

4 using namespace std;

5

6 MYService: :MYService (char xexec_name) :NTService (exec_name)
7 {

8 }

9

10 void MYService::start (int argc,char *xargv,Tango::NTEventLogger =xlogger)
11 {
12 Tango::Util =xtg;
13 try
14 {
15 Tango::Util::_service = true;
16
17 tg = Tango::Util::init (argc,argv);
18
19 tg->server_init ();

246 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

20

21 tg->server_run () ;

22 }

23 catch (bad_alloc)

24 {

25 logger—->error ("Can't allocate memory to store device object");
26 }

27 catch (Tango::DevFailed &e)

28 {

29 logger—>error (e.errors[0] .desc.in());
30 }

31 catch (CORBA: :Exception &)

32 {

33 logger—>error ("CORBA Exception");

34 }

35 }

Line 6-8 : The MY Service class constructor code.
Line 15 : Set to true the _service static variable of the Tango:: Util class.
Line 17-21 : Classical Tango device server startup code

Line 23-34 : Exception management. Please, note that within a service. it is not possible to print data on a console.
This method receives a reference to a logger object. This object sends all its output to the Windows event system. It is
used to send messages when an exception has occurred.

The main function

The main function is used to create one instance of the class describing the service, to check the service option and to
run the service. The code looks like :

1 #include <tango.h>

2 #include <MYService.h>

3

4 using namespace std;

5

6

7 int main(int argc,char *argv[])
8 {

9 MYService service (argv[0]);
10
11 int ret;
12 if ((ret = service.options(argc,argv)) <= 0)
13 return ret;
14
15 service.run(argc,argv) ;
16
17 return 0;
18 }

Line 9 : Create one instance of the MY Service class with the executable name as parameter
Line 12 : Check service option with the options() method inherited from the NTService class.

Line 15 : Run the service. The run() method is inherited from the NTService class. This method will after some NT
initialization sequence execute the user start() method.

6.5. Device Servers 247

Tango Controls Documentation, Release 9.3.4

Service options and messages

When a Tango device server is written as a Windows service, it supports several new options. These option are linked
to Windows service usage.

Before it can be used, a service must be installed. A name and a title is associated to each service. For Tango device
server used as service, the service name is build from the executable name followed by the underscore character and
the instance name. For example, a device server service executable file named “opc” and started with “fluids” as
instance name, will be named “opc_fluids”. The title string is built from the service executable name followed by
the sentence “Tango device server” and the instance name between parenthesis. In the previous example, the service
title will be “opc Tango device server (fluids)”. Once a service is installed, you can configure it with the “Services”
application of the control panel. Services title are displayed by this application and allow the user to select one specific
service. Once a service is selected, it is possible to start/stop it and to configure its startup type as manual (with the
Services application) or as automatic. When the automatic mode is chosen, the service starts when the computer is
started. In this case, the service executable code must resides on the computer local disk.

Tango device server logs message in the Windows event system when the service is started or stopped. You can
see these messages with the “Event Viewer” application (Start->Programs->Administrative tools->Event Viewer) and
choose the Application events.

The new options are -i, -s, -u, -h and -d.
e -i: Install the service
 -s: Install the service and choose the automatic startup mode
¢ -u: Un-install the service

 -dbg : Run in console mode to debug service. The service must have been installed prior to used it. The classical
-v device server option can be used with the -d option.

On the command line, all these options must be used after the device server instance name (“opc fluids -i” to install
the service, “opc fluids -u” to un-install the service, “opc fluids -v -d” to debug the service)

Tango device server using MFC as Windows service

If your Tango device server uses MFC and must be written as a Windows NT service, follow these rules :
* Don’t forget to add the stdafx.h file as the first file included in all the source files making the project.
* Comment out the definition of VC_EXTRALEAN in the stdafx.h file.
» Change the pre-processor definitions, replace _WINDOWS by _CONSOLE

Add the /SUBSYSTEM:CONSOLE option in the linker options window of the project settings.

Add a call to initialize the MFC (AfxWinlnit()) in the service main function

1 int main (int argc,char =*argv[])

2 {

3 if ('AfxWinInit (::GetModuleHandle (NULL),NULL, : :GetCommandLine (), 0))
4 {

5 cerr << "Can't initialise MFC !" << endl;
6 return -1;

7 }

8

9 service serv(argv[0]);
10
11 int ret;
12 if ((ret = serv.options(argc,argv)) <= 0)

248 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

13 return ret;

14

15 serv.run(argc,argv) ;
16

17 return 0;

18 }

Line 3 : The MFC classes are initialized with the AfxWinlnit() function call.

Compiling, linking and executing a TANGO device server process

Compiling and linking a C++ device server
On UNIX like operating system
Supported development tools

The supported compiler for Linux is gee release 3.3 and above. Please, note that to debug a Tango device server
running under Linux, gdb release 7 and above is needed in order to correctly handle threads.

Compiling

TANGO for C++ uses omniORB (release 4) [omniORB] as underlying CORBA Object Request Broker [OMG] and
starting with Tango 8, the ZMQ library [ZMQ]. To compile a TANGO device server, your include search path must
be set to :

* The omniORB include directory
e The ZMQ include directory
* The Tango include directory

* Your development directory

Linking

To build a running device server process, you need to link your code with several libraries:
e The Tango library (called libtango)
* Three omniORB package libraries (called libomniORB4, libomniDynamic4 and libCOS4)
¢ The omniORB threading library (called libomnithread)
* The ZMQ library (callled libzmq)
On top of that, you need additional libraries depending on the operating system :
* For Linux, add the POSIX thread library (libpthread)

The following table summarizes the necessary options to compile a Tango C++ device server. Please, note that starting
with Tango 8 and for gcc release 4.3 and later, some C++11 code has been used. This requires the compiler option
-std=c++0x (or better). Obviously, the options -I and -L. must be updated to reflect your file system organization.

6.5. Device Servers 249

Tango Controls Documentation, Release 9.3.4

Operating Compiling option Linking option

system

Linux gcc -D_REENTRANT - | -L.. -ltango -lomniORB4 -lomniDynamic4 -1COS4 -lomnithread
std=c++0x -I.. -lzmq -lpthread

The following is an example of a Makefile for Linux. Obviously, all the paths are set to the ESRF file system structure.

1 #

2 # Makefile to generate a Tango server

3 #

4

5 CC = ct++

6 BIN_DIR = ubuntullO4

7 TANGO_HOME = /segfs/tango

8

9 INCLUDE_DIRS = -I $(TANGO_HOME) /include/$ (BIN_DIR) -1
10
11
12 LIB_DIRS = -L $(TANGO_HOME)/lib/$ (BIN_DIR)
13
14

15 CXXFLAGS -D_REENTRANT -std=c++0x $ (INCLUDE_DIRS)
16 LFLAGS = $(LIB_DIRS) -ltango \

17 -lomniORB4 \

18 —lomniDynamic4 \
19 -1C0S4 \

20 —lomnithread \
21 -lzmg \

22 —lpthread

23

24

25 SVC_OBJS = main.o \

26 ClassFactory.o \

27 SteppermotorClass.o \

28 Steppermotor.o \

29 SteppermotorStateMachine.o
30

31

32 .SUFFIXES: .o .cpp

33 .cpp.o:

34 $(CC) $(CXXFLAGS) -c $<

35

36

37 all: StepperMotor

38

39 StepperMotor: $(SVC_OBJS)

40 $(CC) $(SVC_OBJS) -o $(BIN_DIR)/StepperMotor $(LFLAGS)

41
42 clean:
43 rm —-f x.0 core

Line 5-7 : Define Makefile macros
Line 9-10 : Set the include file search path

250 Chapter 6.

Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Line 12 : Set the linker library search path

Line 15 : The compiler option setting

Line 16-23 : The linker option setting

Line 26-30 : All the object files needed to build the executable

Line 33-35 : Define rules to generate object files

Line 38 : Define a “all” dependency

Line 40-41 : How to generate the StepperMotor device server executable

Line 43-44 : Define a “clean” dependency

On Windows using Visual Studio

Supported Windows compiler for Tango is Visual Studio 2008 (VC 9), Visual Studio 2010 (VC10) and Visual Studio
2013 (VC12). Most problems in building a Windows device server revolve around the /M compiler switch family.
This switch family controls which run-time library names are embedded in the object files, and consequently which
libraries are used during linking. Attempt to mix and match compiler settings and libraries can cause link error and
even if successful, may produce undefined run-time behavior.

Selecting the correct /M switch in Visual Studio is done through a dialog box. To open this dialog box, click on
the “Project” menu (once the correct project is selected in the Solution Explorer window) and select the “Properties”
option. To change the compiler switch open the “C/C++” tree and select “Code Generation”. The following options
are supported.

e Multithreaded = /MT

* Multithreaded DLL = /MD

* Debug Multithreaded = /MTd

* Debug Multithreaded DLL = /MDd

Compiling a file with a value of the /M switch family will impose at link phase the use of libraries also compiled with
the same value of the /M switch family. If you compiled your source code with the /MT option (Multithreaded), you
must link it with libraries also compiled with the /MT option.

On both 32 or 64 bits computer, omniORB and TANGO relies on the preprocessor identifier WIN32 being defined
in order to configure itself. If you build an application using static libraries (option /MT or /MTd), you must add
_WINSTATIC to the list of the preprocessor identifiers. If you build an application using DLL (option /MD or
/MDd), you must add LOG4TANGO_HAS_DLL and TANGO_HAS_DLL to the list of preprocessor identifiers.

To build a running device server process, you need to link your code with several libraries on top of the Windows
libraries. These libraries are:

* The Tango library (called tango.lib or tangod.lib for debug mode)

* The omniORB package libraries (see next table)

Compile mode Libraries
Debug Multithreaded omniORB4d.lib, omniDynamic4d.lib, omnithreadd.lib and COS4d.lib
Multithreaded omniORB4.1ib, omniDynamic4.1ib, omnithread.lib and COS4.lib

Debug Multithreaded | omniORB420 _rtd.lib, omniDynamic420_rtd.lib, omnithread40_rtd.lib, and
DLL C0OS420_rtd.lib
Multithreaded DLL omniORB420_rt.lib, omniDynamic420_rt.lib, omnithread40_rt.lib and COS420_rt.lib

e The ZMQ library (zmgq.lib or zmqd.lib for debug mode)

6.5. Device Servers 251

Tango Controls Documentation, Release 9.3.4

¢ Windows network libraries (mswsock.lib and ws2_32.lib)
* Windows graphic library (comctl32.lib)

To add these libraries in Visual Studio, open the project property pages dialog box and open the “Link” tree. Select
“Input” and add these library names to the list of library in the “Additional Dependencies” box.

The “Win32 Debug” or “Win32 Release” configuration that you change within the Configuration Manager window
changes the /M switch compiler. For instance, if you select a “Win32 Debug” configuration in a non-DLL project, use
the omniORB4d.lib, omniDynamic4d.lib and omnithreadd.lib libraries plus the tangod.lib and zmqd.lib libraries. If
you select the “Win32 Release” configuration, use the omniORB4.1ib, omniDynamic4.lib and omnithread.lib libraries
plus the tango.lib and zmq.lib libraries.

WARNING: In some cases, the Microsoft Visual Studio wizard used during project creation generates one include file
called Stdafx.h. If this file itself includes windows.h file, you have to add the preprocessor macro _WIN32_WINNT
and set it to 0x0500.

Running a C++ device server

To run a C++ Tango device server, you must set an environment variable. This environment variable is called
TANGO_HOST and has a fixed syntax which is

TANGO_HOST=<host>:<port>

The host field is the host name where the TANGO database device server is running. The port field is the port number
on which this server is listening. For instance, a valid syntax is TANGO_HOST=dumela:10000. For UNIX like
operating system, setting environment variable is possible with the export or setenv command depending on the shell
used. For Windows, setting environment variable is possible with the “Environment” tab of the “System” application
in the control panel.

If you need to start a Tango device server on a pre-defined port (For Tango database device server or device server
without database usage), you must use one of the underlying ORB option endPoint like

myserver myinstance_name -ORBendPoint giop:tcp::<port number>

Advanced programming techniques

The basic techniques for implementing device server pattern are required by each device server programmer. In certain
situations, it is however necessary to do things out of the ordinary. This chapter will look into programming techniques
which permit the device server serve more than simply the network.

Receiving signal

It is UNSAFE to use any CORBA call in a signal handler. It is also UNSAFE to use some system calls in a signal
handler. Tango device server solved this problem by using threads. A specific thread is started to handle signals.
Therefore, every Tango device server is automatically a threaded process. This allows the programmer to write the
code which must be executed when a signal is received as ordinary code. All device server threads masks all signals
except the specific signal thread which is permanently waiting for signal. If a signal is sent to a device server process,
only the signal thread will receive it because it is the single thread which does not mask signals.

Nevertheless, signal management is not trivial and some care have to be taken. The signal management differs from
operating system to operating system. It is not recommended that you install your own signal routine using any of the
signal routines provided by the operating system calls or library.

252 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

Using signal

It is possible for C++ device server to receive signals from drivers or other processes. The TDSOM supports receiving
signal at two levels: the device level and the class level. Supporting signal at the device level means that it is possible
to specify interest into receiving signal on a device basis. This feature is supported via three methods defined in the
Devicelmpl class. These methods are called register_signal, unregister_signal and signal_handler.

The *register_signal* method has one parameter which is the signal number. This method informs the device server
signal system that the device want to be informed when the signal passed as parameter is received by the process. There
is a special case for Linux as explained in the previous sub-chapter. It is possible to register a signal to be executed
in the a signal handler context (with all its restrictions). This is done with a second parameter to this register_signal
method. This second parameter is simply a boolean data. If it is true, the signal_handler will be executed in a signal
handler context in the device server main thread. A default value (false) has been defined for this parameter.

The *unregister_signal* method also have an input parameter which is the signal number. This method removes the
device from the list of object which should be warned when the signal is received by the process.

The *signal_handler* method is the method which is triggered when a signal is received if the corresponding reg-
ister_signal has been executed. This method is defined as virtual and can be redefined by the user. It has one input
argument which is the signal number.

The same three methods also exist in the DeviceClass class. Their action and their usage are similar to the Devicelmpl
class methods. Installing a signal at the class level does not mean that all the device belonging to this class will receive
the signal. This only means that the signal_handler method of the DeviceClass instance will be executed. This is
useful if an action has to be executed once for a class of devices when a signal is received.

The following code is an example with our stepper motor device server configured via the database to serve three
motors. These motors have the following names : id04/motor/01, id04/motor/02 and id04/motor/03. The signal
SIGALRM (alarm signal) must be propagated only to the motor number 2 (id04/motor/02)

1 void StepperMotor::init_device ()

2 {

3 cout << "StepperMotor::StepperMotor () create motor " << dev_name <<,
—endl;

4

5 long 1i;

6

7 for (i=0; i< AGSM_MAX_MOTORS; i++)

8 {

9 axis[i] = 0;

10 position[i] = 0;

11 direction[i] = 0;

12 }

13

14 if (dev_name == "id04/motor/02")

15 register_signal (SIGALRM) ;

16 }

17

18 StepperMotor: :~StepperMotor ()

19 {
20 unregister_signal (SIGALRM) ;
21 }
22
23 void StepperMotor::signal_handler (long signo)
24 {
25 INFO_STREAM << "Inside signal handler for signal " << signo << endl;
26

6.5. Device Servers 253

Tango Controls Documentation, Release 9.3.4

27 // Do what you want here
28
29 }

The init_device method is modified.

Line 14-15 : The device name is checked and if it is the correct name, the device is registered in the list of device
wanted to receive the SIGALARM signal.

The destructor is also modified

Line 20 : Unregister the device from the list of devices which should receives the SIGALRM signal. Note that
unregister a signal for a device which has not previously registered its interest for this signal does nothing.

The signal_handler method is redefined
Line 25 : Print signal number
Line 27 : Do what you have to do when the signal SIGALRM is received.

If all devices must be warned when the device server process receives the signal SIGALRM, removes line 14 in the
init_device method.

Exiting a device server gracefully

A device server has to exit gracefully by unregistering itself from the database. The necessary action to gracefully exit
are automatically executed on reception of the following signal :

e SIGINT, SIGTERM and SIGQUIT for device server running on Linux
» SIGINT, SIGTERM, SIGABRT and SIGBREAK for device server running on Windows

This does not prevents device server to also register interest at device or class levels for those signals. The user installed
signal_handler method will first be called before the graceful exit.

Inheriting

This sub-chapter details how it is possible to inherit from an existing device pattern implementation. As the device
pattern includes more than a single class, inheriting from an existing device pattern needs some explanations.

Let us suppose that the existing device pattern implementation is for devices of class A. This means that classes
A and AClass already exists plus classes for all commands offered by device of class A. One new device pattern
implementation for device of class B must be written with all the features offered by class A plus some new one. This
is easily done with the inheritance. Writing a device pattern implementation for device of class B which inherits from
device of class A means :

* Write the BClass class

* Write the B class

» Write B class specific commands

» Eventually redefine A class commands

The miscellaneous code fragments given below detail only what has to be updated to support device pattern inheritance

Writing the BClass

As you can guess, BClass has to inherit from AClass. The command_factory method must also be adapted.

254 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

1 namespace B

2 {

3

4 class BClass : public A::AClass

5 {

6 ...

7 }

8

9 BClass: :command_factory ()
10 {
11 A::AClass: :command_factory();
12
13 command_list.push_back(....);
14 }
15

16 } /x End of B namespace */
Line 1 : Open the B namespace
Line 4 : BClass inherits from AClass which is defined in the A namespace.

Line 11 : Only the command_factory method of the BClass will be called at start-up. To create the AClass commands,
the command_factory method of the AClass must also be executed. This is the reason of the line

Line 13 : Create BClass commands

Writing the B class

As you can guess, B has to inherits from A.

1 namespace B

2 {

3

4 class B : public A:A
5 {

6 ...

7 bi

8

9 B::B(Tango: :DeviceClass *cl,const char xs):A::A(cl,s)
10 {
11 ce e
12 init_device () ;
13 }
14
15 volid B::init_device ()
16 {
17
18 }
19

20 } /x End of B namespace */
Line 1 : Open the B namespace.
Line 4 : B inherits from A which is defined in the A namespace

Line 9 : The B constructor calls the right A constructor

6.5. Device Servers 255

Tango Controls Documentation, Release 9.3.4

Writing B class specific command

Noting special here. Write these classes as usual

Redefining A class command

It is possible to redefine a command which already exist in class A only if the command is created using the
inheritance model (but keeping its input and output argument types). The method which really execute the class
A command is a method implemented in the A class. This method must be defined as virtual. In class B, you can
redefine the method executing the command and implement it following the needs of the B class.

Using another device pattern implementation within the same server

It is often necessary that inside the same device server, a method executing a command needs a command of another
class to be executed. For instance, a device pattern implementation for a device driven by a serial line class can use
the command offered by a serial line class embedded within the same device server process. To execute one of the
command (or any other CORBA operations/attributes) of the serial line class, just call it as a normal client will do by
using one instance of the DeviceProxy class. The ORB will recognize that all the devices are inside the same process
and will execute calls as a local calls. To create the DeviceProxy class instance, the only thing you need to know is the
name of the device you gave to the serial line device. Retrieving this could be easily done by a Tango device property.
The DeviceProxy class is fully described in Tango Application Programming Interface (API) reference WEB pages

Device pipe

What a Tango device pipe is has been defined in the Chapter 3 about device server model. How you read or write a
pipe in a client software is documented in chapter 4 about the Tango APL. In this section, we describe how you can
read/write into/from a device pipe on the server side (In a Tango class with pipe).

Client reading a pipe

When a client reads a pipe, the following methods are executed in the Tango class:
1. The always_executed_hook() method.

2. A method called is_<pipe_name>_allowed(). The rule of this method is to allow (or disallow) the next method
to be executed. It is usefull for device with some pipes which can be read only in some precise conditions. It
has one parameter which is the request type (read or write)

3. A method called read_<pipe_name>(). The aim of this method is to store the pipe data in the pipe object. It has
one parameter which is a reference to the Pipe object to be read.

The figure 6.8 is a drawing of these method calls sequencing for our class StepperMotor with one pipe named DynData.

256 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

read pipe |

Device SImpl DynDataPipe class StepperMotor object

always_executed hook | ‘

is_allowed ‘ is_ DynData_allowed ‘

‘ read_DynData ‘

read

Fig. 13: Figure 6.8: Read pipe sequencing

The class DynDataPipe is a simple class which follow the same skeleton from one Tango class to another. Therefore,
this class is generated by the Tango code generator Pogo and the Tango class developper does not have to modify
it. The method is_DynData_allowed() is relatively simple and in most cases the default code generated by Pogo is
enough. The method read_DynData() is the method on which the Tango class developper has to concentrate on. The
following code is one example of these two methods.

1 bool StepperMotor::is_DynData_allowed(Tango: :PipeReqType req)
2 {
3 if (get_state() == Tango::0N)
4 return true;
5 else
[return false;
7 }
8
9 void StepperMotor::read_DynData (Tango::Pipe &pipe)
10 {
11 nb_call++;
12 if (nb_call % 2 == 0)
13 {
14 pipe.set_root_blob_name ("BlobCaseEven");
15
16 vector<string> de_names {"EvenFirstDE", "EvenSecondDE"};
17 pipe.set_data_elt_names (de_names) ;
18
19 dl = 666;
20 v_db.clear ();
21 v_db.push_back (1.11);
22 v_db.push_back (2.22);
23
24 pipe << dl << v_db;
25 }

6.5. Device Servers

257

Tango Controls Documentation, Release 9.3.4

26 else

27 {

28 pipe.set_root_blob_name ("BlobCaseOdd") ;
29

30 vector<string> de_names {"OddFirstDE"};
31 pipe.set_data_elt_names (de_names) ;

32

33 v_str.clear();

34 v_str.push_back ("Hola");

35 v_str.push_back ("Salut");

36 v_str.push_back ("Hi");

37

38 pipe << v_str;

39 }

40 }

The is_DynData_allowed method is defined between lines 1 and 7. It is allowed to read or write the pipe only is
the device state is ON. Note that the input parameter req is not used. The parameter allows the user to know the
type of request. The data type PipeReqType is one enumeration with two possible values which are READ_REQ and
WRITE_REQ.

The read_DynData method is defined between lines 9 and 40. If the number of times this method has been called is
even, the pipe contains two data elements. The first one is named EvenFirstDE and its data is a long. The second one
is named EvenSecondDE and its data is an array of double. If the number of call is odd, the pipe contains only one
data element. Its name is OddFirstDe and its data is an array of strings. Data are inserted into the pipe at lines 24 and
38. The variables nb_call, dl, v_db and v_str are device data member and therefore declare in the .h file. Refer to pipe
section in chapter 3 and to the API reference documentation (in Tango WEB pages) to learn more on how you can
insert data into a pipe and to know how data are organized within a pipe.

Client writing a pipe

When a client writes a pipe, the following methods are executed in the Tango class:
1. The always_executed_hook() method.

2. A method called is_<pipe_name>_allowed(). The rule of this method is to allow (or disallow) the next method
to be executed. It is usefull for device with some pipes which can be read only in some precise conditions. It
has one parameter which is the request type (read or write)

3. A method called write_<pipe_name>(). It has one parameter which is a reference to the WPipe object to be
written. The aim of this method is to get the data to be written from the WPipe oject and to write them into the
corresponding Tango class objects.

The figure 6.9 is a drawing of these method calls sequencing for our class StepperMotor with one pipe named DynData.

258 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

o Device 5Impl DynDataPipe class StepperMotor object
write_pipe |

always executed hook \ ‘

is_allowed ‘ is_ DynData_allowed ‘

write ‘ write_DynData ‘

Fig. 14: Figure 6.9: Write pipe sequencing

The class DynDataPipe is a simple class which follow the same skeleton from one Tango class to another. Therefore,
this class is generated by the Tango code generator Pogo and the Tango class developper does not have to modify
it. The method is_DynData_allowed() is relatively simple and in most cases the default code generated by Pogo is
enough. The method write_DynData() is the method on which the Tango class developper has to concentrate on. The
following code is one example of the write_DynData() method.

void StepperMotor::write_DynData (Tango::WPipe &w_pipe)
{

string str;

vector<float> v_f1;

w_pipe >> str >> v_f1l;

O J oy U w N

In this example, we know that the pipe will always contain a srting followed by one array of float. On top of that, we
are not niterested by the

data element names. Data are extracted from the pipe at line 6 and are available for further use starting at line 7. If the
content of the pipe is not a string followed by one array of float, the data extraction line (6) will throw one exception
which will be reported to the client who has tried to write the pipe. Refer to pipe section in chapter 3 and to the API
reference documentation (in Tango WEB pages) to learn more on how you can insert data into a pipe and to know how
data are organized within a pipe.

6.5.5 Attribute alarms

Intended audience: users, developers
Each Tango attribute two several alarms. These alarms are :
¢ A four thresholds level alarm

¢ The read different than set (RDS) alarm

6.5. Device Servers 259

Tango Controls Documentation, Release 9.3.4

The level alarms

This alarm is defined for all Tango attribute read type and for numerical data type. The action of this alarm depend on
the attribute value when it is read :

« If the attribute value is below or equal the attribute configuration min_alarm parameter, the attribute quality fac-
tor is switched to Tango:: ATTR_ALARM and if the device state is Tango::ON, it is switched to Tango:: ALARM.

o If the attribute value is below or equal the attribute configuration min_warning parameter, the attribute qual-
ity factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON, it is switched to
Tango:: ALARM.

« If the attribute value is above or equal the attribute configuration max_warning parameter, the attribute qual-
ity factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON, it is switched to
Tango::ALARM.

« If the attribute value is above or equal the attribute configuration max_alarm parameter, the attribute quality fac-
tor is switched to Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched to Tango:: ALARM.

If the attribute is a spectrum or an image, then the alarm is set if any one of the attribute value satisfies the above
criterium. By default, these four parameters are not defined and no check will be done.

The following figure is a drawing of attribute quality factor and device state values function of the the attribute value.

. min_alarm min warning max_warning max_alarm
Attribute | | | l
value 1 1 | 1 =
Attribute quality ATTR_ALARM ATTR_WARNING ATTR_VALID ATTR_WARNING ATTR_ALARM
factor
. ALARM ON ALARM
Device state

Fig. 15: Figure 7.1: Level alarm

If the min_warning and max_warning parameters are not set, the attribute quality factor will simply change between
Tango:: ATTR_ALARM and Tango::ATTR_VALID function of the attribute value.

The Read Different than Set (RDS) alarm

This alarm is defined only for attribute of the Tango::READ_WRITE and Tango::READ_WITH_WRITE read/write
type and for numerical data type. When the attribute is read (or when the device state is requested), if the difference
between its read value and the last written value is something more than or equal to an authorized delta and if at
least a certain amount of milli seconds occurs since the last write operation, the attribute quality factor will be set to
Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched to Tango::ALARM. If the attribute is a
spectrum or an image, then the alarm is set if any one of the attribute value’s satisfies the above criterium. This alarm
configuration is done with two attribute configuration parameters called delta_val and delta_t. By default, these two
parameters are not defined and no check will be done.

6.5.6 Enumerated attribute

Intended audience: developers, Programming language: c++

Since Tango release 9, enumerated attribute is supported using the new data type DevEnum. This data type is not a
real C++ enumeration because:

260 Chapter 6. Developer’s Guide

Tango Controls Documentation, Release 9.3.4

1. The enumerated value allways start with O
2. Values are consecutive
3. Itis transferred on the network as DevShort data type

One enumeration label is associated to each enumeration value. For the Tango kernel, it is this list of enumeration
labels which will define the possible enumeration values. For instance if the enumeration has 3 labels, its value must
be between 0 and 2. There are two ways to define the enumeration labels:

1. At attribute creation time. This is the most common case when the list of possible enumeration values and
labels are known at compile time. The Tango code generator Pogo generates for you the code needed to pass
the enumeration labels to the Tango kernel.

2. In the user code when the enumeration values and labels are not known at compile time but retrieved during
device startup phase. The user gives the possible enumeration values to the Tango kernel using the Attribute
class set_properties() method.

A Tango client is able to retrieve