
panic Documentation

Author

Oct 02, 2020





Contents

1 PANIC Description 3
1.1 PANIC, a python Alarm System for TANGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Changelog 5
2.1 PANIC 7.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 PANIC 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 PANIC 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 PANIC 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Release 5.4 - 2015/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Release 5.2 - New evaluate() from API/GUI, added user admins for alarms . . . . . . . . . . . . . . 8
2.7 Release 5.1 - May 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Release 5.0 - May 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 Release 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Installing PANIC on a New System 11
3.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Run the GUI and create a PyAlarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Run the PyAlarm Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 PyAlarm Device Server User Guide 13
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Alarm Syntax Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 PyAlarm Device Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Device Server Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Mail Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 PANIC Recipes 23
5.1 Alarms Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Alarm Formulas Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 AlarmStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Hierarchies In Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Special Alarm Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Exception Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Grouping Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 How PyAlarm Device Server Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.9 PANIC Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



5.10 Exception Management in Panic Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 Using the PANIC python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.12 PanicAdminUsers property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.13 PyAlarm Startup Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.14 PyAlarm timing configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.15 Testing your PyAlarm installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.16 PANIC Receivers, Logging and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.17 PyAlarm Using Events With Taurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Indices and tables 45

ii



panic Documentation

PANIC is a set of tools (api, Tango device server, user interface) that provides:

• Periodic evaluation of a set of conditions.

• Notification (email, sms, pop-up, speakers)

• Keep a log of what happened. (files, Tango Snapshots)

• Taking automated actions (Tango commands / attributes)

• Tools for configuration/visualization

Contents:

Contents 1



panic Documentation

2 Contents



CHAPTER 1

PANIC Description

1.1 PANIC, a python Alarm System for TANGO

Contents

• PANIC Description

– PANIC, a python Alarm System for TANGO

* Description

* Other Project pages

* PyAlarm Device Server

* Panic GUI

* Authors

* LICENSE AND WARRANTY

1.1.1 Description

PANIC is a set of tools (api, Tango device server, user interface) that provides:

• Periodic evaluation of a set of conditions.

• Notification (email, sms, pop-up, speakers)

• Keep a log of what happened. (files, Tango Snapshots)

• Taking automated actions (Tango commands / attributes)

• Tools for configuration/visualization

3



panic Documentation

The Panic package contains the python AlarmAPI for managing the PyAlarm device servers from a client application
or a python shell. The panic module is used by PyAlarm, Panic Toolbar and Panic GUI.

PANIC IS TESTED ON LINUX ONLY, WINDOWS/MAC MAY NOT BE FULLY SUPPORTED IN MASTER
BRANCH

The optional panic submodules are:

panic.ds : PyAlarm device server panic.gui : Placeholder for the PanicGUI application

See the docs at: http://www.pythonhosted.org/panic

Recipes are also available at: https://github.com/tango-controls/PANIC/tree/documentation/doc/recipes

Get the latest release of Panic from: https://github.com/tango-controls/PANIC/releases

See CHANGE log in panic/CHANGES file

1.1.2 Other Project pages

• http://www.tango-controls.org/community/projects/panic-alarm-system

• https://github.com/tango-controls/panic

• https://pypi.python.org/pypi/panic

1.1.3 PyAlarm Device Server

panic.ds.PyAlarm Device Class

PyAlarm is the alarm device server used by ALBA Alarm System, it requires PyTango and Fandango modules, both
available from tango-cs.sourceforge.net

Some configuration panels in the GUI require PyAlarm to be available in the PYTHONPATH, to do so you can add
the PyAlarm.py folder to the PYTHONPATH variable or copy the PyAlarm.py file within the panic folder; so it could
be loaded as a part of the module.

1.1.4 Panic GUI

panic.gui.AlarmGUI Class

Panic is an application for controlling and managing alarms. It depends on panic and taurus libraries.

It allows the user to visualize existing alarms in a clear form and adding/editing/deleting alarms. In edit mode user can
change name, move alarms to another device, change descriptions and modify formulas. Additional widgets in which
the app is equipped allows alarm history viewing, phonebook editing and device settings manipulation.

1.1.5 Authors

Sergi Rubio Alba Synchrotron 2006-2016

1.1.6 LICENSE AND WARRANTY

see LICENSE file

4 Chapter 1. PANIC Description

http://www.pythonhosted.org/panic
https://github.com/tango-controls/PANIC/tree/documentation/doc/recipes
https://github.com/tango-controls/PANIC/releases
http://www.tango-controls.org/community/projects/panic-alarm-system
https://github.com/tango-controls/panic
https://pypi.python.org/pypi/panic
https://github.com/tango-controls/fandango/blob/documentation/LICENSE


CHAPTER 2

Changelog

2.1 PANIC 7.3.0

7.3.0 solve disabled bug, add event pushing save regexp of userfilters between () allow multiple disable/acknowledge
Merge branch ‘documentation’ fix setup.py

7.2.3 - fix bug on snaps widget 7.2.2 - fix bug when UserTimeout is not specified 7.2.1 - Merge panic-wiki-links by
s2Innovation

PANIC_DEFAULT deprecated as option Merge branch ‘S2Innovation-panic-2-wiki-links’ into develop Solve bug on
empty PanicUserTimeout property Merge branch ‘panic-2-wiki-links’ of https://github.com/S2Innovation/PANIC into
S2Innovation-panic-2-wiki-links

7.2.0 - added back taurus3 compatibility, solved bug on history widget

7.1.2 - Solved bugs at gui startup

7.1.1 - Solved bugs on server init, add test_telegram.py

7.1.0 - Merged pull requests from github

S2Innovation: Solve -r problems, added MailRDashOptio for backwards compatibility Gabriel Jover: Add Telegram
messaging, using SendTelegram command and TGConfig property Daniel Roldan: patch in setup.py for Debian pack-
aging

7.0.0 AlarmHandler compatibility, use TANGO properties instead of PyAlarm class

6.5.1 Fixes on new/delete alarms by s2innovation

6.5.0: Fix New Alarm button bug

“New Alarm” button fix by S2innovation Improve Status Message update kpi

6.4.1: solved high cpu issues in pyalarm

Solve High CPU bug: init_callbacks(50ms) added to panic.engine and PyAlarm fix case bug in
panic.view.check_multi_host Avoid api.devices clear during load, do 1by1 update instead

5

https://github.com/S2Innovation/PANIC


panic Documentation

Temporary patch: Multiple disabling/ack disabled to prevent PyAlarm exceptions. see CS4-526 Add Enabled sorting
as “PreCondition” to sort alarms by operation modes Solve bugs on editing formulas or looking at remote values
remove unnecessary imports Solve bug on writing arrays on ACTION Execute SNAP/actions on DEBUG Alarms
(only sms ignored) Add warning on reset of active alarms Remove unused severity checkboxes from main window
(replaced by priority filter) Force devices update on PhoneBook values change remove wrong multi-host warning
Return exception strings on evaluation from client

Add warnings on modifying Device config, unify calls on gui/editor Add exceptions on wrong tag name, use UNACK
as active state Extend regexp syntax to key=value and & clauses add minimal widget for panic system status

2.2 PANIC 6.3.1

PANIC 7 GUI is ready. PanicEngine/PanicViewDS devices are pending.

Added QAlarmPanels, searches and userfilters to GUI

Zillions of bugs solved.

2.3 PANIC 6.2.1

IEC & Elettra compatibility, QAlarmPanel widget, new GUI usable

AlarmSummary/GetAlarmInfo added to PyAlarm for GUI connection; format agreed with Elettra for cross-
compatibility Requires Fandango > 13.2 Alarm States and Fields renamed to match IEC terminology New GUI
using AlarmView to query attribute values as arrays, AlarmView backwards compatibility with Panic <6 Perfor-
mance improvement using latest Fandango (cached DB/DeviceProxy searches) Split and refactor gui module in
gui/actions/views New Alarm object state machine based on json-like arrays (AlarmSummary) Increase ERROR
alarms visibility Allow ‘~’ for negated regexp searches New QAlarmPanel widget New methods for .json export-
ing / web browsing Many GUI bugs solved Add ArchivingBrowser launcher to toolbar Solve validation issues on
AlarmForm editor API refactoring, solved internal imports problem

2.4 PANIC 6.0

Package refactored to build valid system/PIP/rpm packages PANIC Migrated to github. Development moved to de-
velop branch, stable to master

Main new features:

• enhanced logs and actions

• properties managed in the API side

• added multiple test cases

• added GlobalReceivers and Defines

• logs: record local or remote using text or json

• enabled plugin methods for user validation

• solved many, many bugs

Dropped features from this release:

• gui refactoring

6 Chapter 2. Changelog



panic Documentation

• alarm collections

• IEC compliance (in progress)

• kibana integration

Summary of changes since PANIC 5.4 (Last Sourceforge release):

PyAlarm device server:

All panic times are now seconds, added deprecated message for pollings in milliseconds Qual-
ity of failed alarms set to INVALID (~DISABLED)

Solve bug on PyAlarm.GenerateReport command Solve bug on “zombie” alarm
deleted/removed Move Reset notification to send_alarm() Replace phonebook entries on AC-
TION receivers reload global_receivers on init()

free_alarm and send_alarm methods refactored for better actions Added SendAlarm
as command kill/pause events added Added MemUsage/LastUpdate attributes Proper-
ties definition moved to panic.properties Add invalid quality to disabled alarms Add
FAULT state when many alarms are failed Add LastUpdate and MemUsage at-
tributes Avoid update_locals to reread attributes if check=False Add receiver defines:
$ALARM/TAG/NAME/DEVICE/DESCRIPTION/VALUES/REPORT/DATE/JSON

Implement Pause() command and kill/pause methods for thread management. LogFiles capa-
ble of saving remotely using fandango.device.FolderDS

Solved bugs on trigger_action (see documentation on github) Properties definition moved to
panic.properties Added global receivers property Add Reports Cache, refactor send_alarm log-
ging Refactor PyAlarm.parse_receivers Alarm actions will be executed before mail and snap-
shot. Added replacement of $DESCRIPTION,$ALARM in actions

GUI: New panic Icon Reduce gui dependencies to speed up startup GUI adapted to Taurus 4 launcher re-
named to just “panic” Solve GUI bug on empty ActiveAlarms attribute Solve getParams deprecation
on Taurus4 Added User login access via UserValidator widget

API:

Logging added to AlarmAPI Added Alarm.disabled flag to_dict and ping() methods
for Alarms and AlarmDS objects get_active_alarms() method added to AlarmDS Alar-
mDS.Enable/Disable methods now can enable both Devices and individual Alarms Added
export_to_csv and export_to_dict API methods panic.Evaluate() timeout set to 1000. allow
multiple filters on GlobalReceivers Add test cases for Group/Action/Clock/Reset Solve API
bug on empty receivers Solve bug on AlarmAPI.put_db_properties (Wrote to device instead
of free property) Solve bug in AlarmsAPI.get_global_properties Solved bug on phonebook
parsing Group macro refactored (see documentation/recipes) Add api.split_formula() Change
api.evaluate() timeout and checks

2.5 Release 5.4 - 2015/12

Changes in API and device server to solve several multi-host evaluation issues. Small patches required by SKA project.

2.5. Release 5.4 - 2015/12 7



panic Documentation

2.6 Release 5.2 - New evaluate() from API/GUI, added user admins for
alarms

evaluate() method adapted to be usable by GUI and test evaluation on a remote PyAlarm device Bug solved on Sen-
tEmails recording.

2.7 Release 5.1 - May 2015

PyAlarm: added try/except to update_locals() method API: get_admins_for_alarm() method added to enable some
minimal access control.

2.8 Release 5.0 - May 2015

NOTE: Requires Fandango update, to use NaN values and new TangoEval macros

API: Improved group macro to use only cached values for evaluation API: Improved caselessness on API Eval: Added
EvalTimes dictionary to keep the time needed on each EvaluateFormula() call. Eval: Added DEVICE, ALARMS,
PANIC objects to locals() Eval: Added own Attribute values to Eval cache to avoid deadlocks when evaluating itself
Enabled property, converted from string to DevVarStringArray to allow time and formulas Attributes: Removed locks
from read methods (UI was locking the evaluation trend), lock is needed only on write/update actions Solved bug
that didn’t send VALUES on State/Attribute exception RethrowAttribute, from boolean to string to allow choosing
False/0/NaN/None Emails: solved problems string arrays and ‘r’ and ‘”’ characters Traces: shortened strings

2.9 Release 4.20

@pending: solve threads and UseProcess issues MaxAlarmsPerDay property removed (was unused) Added new
GROUP macro to formula evaluation. SnapContext: Using modify instead of create context when this already ex-
ists Added methods to taurus-like get_model from alarms Email report refactored to show values in rows and parse
state values. Added methods do import/export alarm configurations from .csv files EvaluateFormula converted in a
Tango command callable by clients Solved bugs using SNAP as receiver. Snap: Using newest context when several
match the alarm name Eval cache reduced to AlarmThreshold+1 to adjust .delta to AlarmThreshold Solved bug in
SMS sending when source contains non-alpha characters

Release 4.19 @pending: solve threads and UseProcess issues Solved bugs in alarm parsing, loading .csv and loading
alarms from device Added AlarmValueLabel widget

Release 4.18 Disable screen in launch script, replaced by Tango logging Added DDebug device for debugging threads
AlarmsAPI.load() time consumption reduced to avoid timeouts RethrowState=False and RethrowAttribute=False will
disable exception propagation from TangoEval, it allows to manage exceptions as None in the alarm formulas. Added
IgnoreExceptions property Using polling period instead of timeout as keeptime on TangoEval Renamed method
get_attribute_values to get_last_values

In AlarmAPI:

Added filter_alarms, export_to_csv, modify methods get/filter* methods modified to allow custom alarm lists Bugs
solved in load_from_csv getCurrent will return last API instance used

Added IgnoreExceptions property children() replaced by get_basic_alarms method parse_variables replaced by
parse_attributes and evaluate()

Release 4.17 2013/09/09

8 Chapter 2. Changelog



panic Documentation

Added VersionNumber attribute Added methods Status/dev_status to remove automatic messages on quali-
ties. Added self.update_locals() for a better update of alarm values, periods and conditions reviewed. fan-
dango.threads.WorkerProcess has been optimized, PyAlarm modified to use new pause method Methods returning
sorted lists

Release 4.16

References to taurus removed if UseTaurus property is False (default) Minimum polling reduced to 250 ms Using
panic.PyAlarmDefaultProperties to have consitency between api/gui/device Solved bug that caused timeouts on alarm
exception (time wait before finally clause) Disable method is now capable to disable alarms only for TIMEOUT
argument If Enabled property is an integer, alarm changes will be ignored for INT seconds at startup; it should allow
to restart devices w/out resending all active alarms; a ResetAll() can be used to rethrow all messages if wanted.
CheckDisabled will manage alarm reactivation after timeout

The Panic module has been renamed to panic; several bugs have been solved and methods for enabling/disabling
alarms have been added.

4.15 September 2012 Disabled LogFile by default BETA: Cache added to TangoEval to try alarm on transition.

4.14, September 2012 Added StartupDelay property Bugs solved in Snap context creation. Added user message to
alarm RESET emails.

2.9. Release 4.20 9



panic Documentation

10 Chapter 2. Changelog



CHAPTER 3

Installing PANIC on a New System

3.1 Dependencies

PANIC is available from Github, PyPI and as Debian or SuSE packages.

If you install from SuSE or Debian packages dependencies will be automatically installed.

If not, then you’ll need Tango, PyTango and Fandango for the server side (including its dependencies, ZMQ, numpy,
. . . ).

For the client side you’ll also need Taurus library and PyQt4.

You should be able to get all these packages also from www.tango-controls.org

3.2 Run the GUI and create a PyAlarm

Running “setup.py install” should install the panic-gui script in your system.

But if you don’t want to install the application you can just run python panic/gui/gui.py to launch the client.

In your first run it will apply completely empty. Just create your first PyAlarm instance going to the “Config” icon in
the toolbar and pushing “Create New” button.

Now you can create your first PyAlarm pushing “New” in the main widget. You’ll be prompted to fill the gaps, for a
first installation I recommend this alarm:

TAG: TEST_LOG Description: just testing Severity: WARNING Receivers:
your_mail@your_domain.com Formula: True

This simple alarm will allow you to check if email sending works properly.

11

mailto:your_mail@your_domain.com


panic Documentation

3.3 Run the PyAlarm Server

Use Astor or the shell to start your newly created PyAlarm:

python ds/PyAlarm.py TEST -v4

After ~45 seconds (if you didn’t modified the default configuration) you’ll receive your first email from PANIC.

Now head to the configuration docs to know all the options you have for tuning the behaviour.

12 Chapter 3. Installing PANIC on a New System



CHAPTER 4

PyAlarm Device Server User Guide

Contents

• PyAlarm Device Server User Guide

– Description

– Internal Structure

* The AlarmAPI

* The updateAlarms thread

* The TangoEval engine

– Alarm Syntax Recipes

* Sending a Test Message at Startup

* Testing a device availability

* Getting Tango state/attribute/value/quality/time/delta in formulas

* Creating a periodic self-reset alarm

* Enabling search, expression matching and list comprehensions

* Some list comprehension examples

* Grouping Alarms in Formulas

– PyAlarm Device Properties

* Distributing Alarms between servers

* Alarm Declaration Properties

· AlarmList

13



panic Documentation

· AlarmDescriptions

· AlarmReceivers

· Adding ACTION as receiver

· PhoneBook (not implemented yet)

* REMINDER / RECOVERED / AUTORESET messages

· Reminder

· AlertOnRecovery

· AutoReset

* Snapshot properties

· UseSnap

· CreateNewContexts

* Alarm Configuration Properties

– Device Server Example

– Mail Messages

* Format of Alarm message

* Format of Recovered message

4.1 Description

This device server is used as a alarm logger, it connects to the list of attributes provided and verifies its values.

Its focused on notifying Alarms by log files, Mail, SMS and (some day in the future) electronic logbook.

You can acknowledge these alarms by a proper command.

4.2 Internal Structure

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device will share
a common evaluation environment determined by PyAlarm properties.

4.2.1 The AlarmAPI

This object encapsulates the access to the alarm configurations database. Tango Database is used by default, all
alarm configurations are stored as device properties of each declared PyAlarm device (AlarmList, AlarmReceivers,
AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

14 Chapter 4. PyAlarm Device Server User Guide



panic Documentation

4.2.2 The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod. All Enabled alarms will be evaluated
at each cycle; and if evaluated to a True value (understood as any value not in (0,”“,None,False,[],{})).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active. Then
the PyAlarm will process all elements of the AlarmReceivers list.

4.2.3 The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value. It will also provide
several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1. This cache allows
to create alarms using .delta or inspecting the cache for specific behaviors.

4.3 Alarm Syntax Recipes

Alarms are parsed and evaluated using fandango.TangoEval class.

4.3.1 Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList -> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers -> DEBUG: test@tester.com

4.3.2 Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm
will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > 1e-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > 1e-4

4.3.3 Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception}

attribute: if no attribute name is given, then device state is read.

PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT

value: default, returns the value of the attribute

Pressure_Alarm: BL22/CT/EPS-PLC-01/CC1_AF.value > 1e-5

4.3. Alarm Syntax Recipes 15

mailto:test@tester.com


panic Documentation

time: returns the epoch in seconds of the last value read

Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now-60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

Temperature_Alarm: BL22/CT/EPS-PLC-01/OP_WBAT_OH01_01_TC11.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size
AlarmThreshold+1)

Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

4.3.4 Creating a periodic self-reset alarm

A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties.
See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC:(FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

4.3.5 Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

any([ATTR_ALARM==s+'.quality' for s in FIND('dom/fam/*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

any([ATTR_ALARM==QUALITY(s) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an
<pre>event_received(. . . )</pre> hook.

4.3.6 Some list comprehension examples

any([s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

equals to

any(FIND(SR/ID/SCW01/Cooler*Err*))

The negate:

16 Chapter 4. PyAlarm Device Server User Guide

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time


panic Documentation

any([s==0 for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

any(not s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

not all(FIND(SR/ID/SCW01/Cooler*Err*))

is equivalent to

[s for s in FIND(SR/ID/SCW01/Cooler*Err*) if not s]

4.3.7 Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any(( ALARM_1 , ALARM_2 ))

or:

ALARM_ANY: any( FIND(my/alarm/device/ALARM_*) )

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

4.4 PyAlarm Device Properties

4.4.1 Distributing Alarms between servers

Alarms can be distributed between PyAlarm servers using the PyAlarm/AlarmsList property. A Panic system works
well with 1200+ alarms distributed in 75 devices, with loads between 5 and 70 attrs/device. But instead of thinking in
terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same host or subsystem.

There are two reasons to do that (and also apply to Archiving):

4.4. PyAlarm Device Properties 17



panic Documentation

• When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If
alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When
alarms are grouped by host you isolate the problems.

• Same applies for very event-intensive devices. Devices that generate a lot of information will need lower at-
trs/pyalarm ratio than devices that do not change so much.

But, it is a good advice to keep the overall number of alarms in the system below 10K alarms. For manageability of
the log system and avoid avalanches of useless information the logical number of alarms should be around or below
1000.

4.4.2 Alarm Declaration Properties

AlarmList

Format of alarms will be:

TAG1:LT/VC/Dev1
TAG2:LT/VC/Dev1/State
TAG3:LT/VC/Dev1/Pressure > 1e-4

NOTE: This property was previously called AlarmsList; it is still loaded if AlarmList is empty for backward compati-
bility

AlarmDescriptions

Description to be included in emails for each alarm. The format is:

TAG:AlarmDescriptions...

NOTE: Special Tags like $NAME (for name of PyAlarm device) or $TAG (for name of the Alarm) will be automati-
cally replaced in description.

AlarmReceivers

TAG1:vacuum@accelerator.es,SMS:+34935924381,file:/tmp/err.log
vacuum@accelerator.es:TAG1,TAG2,TAG3

Other options are SNAP or ACTION:

user@cells.es,
SMS:+34666777888, #If SMS sending available
SNAP, #Alarm changes will be recorded in SNAP database.
ACTION(alarm:command,mach/alarm/beep/play_sequence,$DESCRIPTION)

Or Telegram messages, see:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/TelegramSetup.rst

18 Chapter 4. PyAlarm Device Server User Guide

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/TelegramSetup.rst


panic Documentation

Adding ACTION as receiver

Executing a command on alarm/disable/reset/acknowledge:

ACTION(alarm:command,mach/alarm/beep/play_sequence,$DESCRIPTION)

The syntax allow both attribute/command execution and the usage of multiple typed arguments:

ACTION(alarm:command,mach/dummy/motor/move,int(1),int(10))
ACTION(reset:attribute,mach/dummy/motor/position,int(0))

Also commands added to the Class property @AllowedCommands@ can be executed:

ACTION(alarm:system:beep&)

PhoneBook (not implemented yet)

File where alarm receivers aliases are declared; e.g.

User:user@accelerator.es;SMS:+34666555666

Default location is: ‘‘ $HOME/var/alarm_phone_book.log ‘‘

If User and Operator are defined in phonebook, AlarmsReceivers can be:

TAG2:User,Operator

4.4.3 REMINDER / RECOVERED / AUTORESET messages

Reminder

If a number of seconds is set, a reminder mail will be sent while the alarm is still active, if 0 no Reminder will be sent.

AlertOnRecovery

A message is sent if an alarm is active but the conditions of the attributes return to a safe value. To enable the message
the content of this property must contain ‘email’, ‘sms’ or both. If disabled no RECOVERY/AUTO-RESET messages
are sent.

AutoReset

If a number of seconds is set, the alarm will reset if the conditions are no longer active after the given interval.

4.4.4 Snapshot properties

UseSnap

If false no snapshots will be trigered (unless specifically added to receivers using “SNAP” ),

4.4. PyAlarm Device Properties 19



panic Documentation

CreateNewContexts

It enables PyAlarm to create new contexts for alarms if no matching context exists in the database.

4.4.5 Alarm Configuration Properties

(In future releases these properties could be individually configurable for each alarm)

Enable : If False forces the device to Disabled state and avoids messaging.

LogFile : File where alarms are logged Default: “/tmp/alarm_$NAME.log”

FlagFile : File where a 1 or 0 value will be written depending if theres active alarms or not.n<br>This file can be used
by other notification systems. Default: “/tmp/alarm_ds.nagios”

PollingPeriod : Periode in seconds. in which all attributes not event-driven will be polled. Default: 60000

MaxAlarmsPerDay : Max Number of Alarms to be sent each day to the same receiver. Default: 3

AlarmThreshold : Min number of consecutive Events/Pollings that must trigger an Alarm. Default: 3

FromAddress : Address that will appear as Sender in mail and SMS Default: “controls”

SMSConfig : Arguments for sendSMS command Default: “:”

MaxMessagesPerAlarm : To avoid the previous property to send a lot of messages continuously this property has
been added to limit the maximum number of messages to be sent each time that an alarm is enabled/recovered/reset.

StartupDelay : Time that PyAlarm waits before starting the Alarm evaluation threads.

EvalTimeout : Timeout for read_attribute calls, in milliseconds .

UseProcess : To create new OS processes instead of threads.

4.5 Device Server Example

These will be the typical properties of a PyAlarm device

#---------------------------------------------------------
# SERVER PyAlarm/AssemblyArea, PyAlarm device declaration
#---------------------------------------------------------
PyAlarm/AssemblyArea/DEVICE/PyAlarm: "LAB/VC/Alarms"
# --- LAB/VC/Alarms properties
LAB/VC/Alarms->AlarmDescriptions: "OVENPRESSURE:The pressure in the Oven exceeds Range
→˓",\

"ADIXENPRESSURE:The pressure in the Roughing Station
→˓exceeds Range",\

"OVENTEMPERATURE:The Temperature of the Oven exceeds
→˓Range",\

"DEBUG:Just for debugging purposes"
LAB/VC/Alarms->AlarmReceivers: OVENPRESSURE:somebody@cells.es,someone_else@cells.es,
→˓SMS:+34999666333,\

ADIXENPRESSURE:somebody@cells.es,someone_else@cells.es,
→˓SMS:+34999666333,\

OVENTEMPERATURE:somebody@cells.es,someone_else@cells.es,
→˓SMS:+34999666333,\

(continues on next page)

20 Chapter 4. PyAlarm Device Server User Guide



panic Documentation

(continued from previous page)

DEBUG:somebody@cells.es
LAB/VC/Alarms->AlarmsList: "OVENPRESSURE:LAB/VC/BestecOven-1/Pressure_mbar > 5e-4",\

"OVENRUNNING:LAB/VC/BestecOven-1/MaxValue > 70",\
"ADIXENPRESSURE:LAB/VC/Adixen-01/P1 > 1e-4 and OVENRUNNING",\
"OVENTEMPERATURE:LAB/VC/BestecOven-1/MaxValue > 220",\
"DEBUG:OVENRUNNING and not PCISDOWN"

LAB/VC/Alarms->PollingPeriod: 30
LAB/VC/Alarms->SMSConfig: ...

4.6 Mail Messages

PyAlarm allows to send mail notifications. Each alarm may be configured with AlarmReceivers property to provide
notification list. There is also a GobalReceivers property which allows to define notification for all alarms.

PyAlarm supports two ways of sending mails configured with the MailMethod class property:

• using mail shell command, when MailMethod is set to mail, which is default,

• or using smtplib python library when MailMethod is set to smtp[:host[:port]].

When using mail method it setup from variable as ‘-S’ option (see: https://linux.die.net/man/1/mail ). However, some
setups may require to use -r option additionally. To enable it set MailDashRoption class property with a proper mail
address.

As it is now, mail messages are formatted as the following:

4.6.1 Format of Alarm message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
LAB/VC/BestecOven-1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

Alarm receivers are:
somebody@cells.es
someone_else@cells.es

Other Active Alarms are:
DEBUG:Fri Nov 7 18:37:35 2008:OVENRUNNING and not PCISDOWN
OVENRUNNING:Fri Nov 7 18:37:17 2008:LAB/VC/BestecOven-1/MaxValue > 70

Past Alarms were:
OVENTEMPERATURE:Fri Nov 7 20:49:46 2008

4.6.2 Format of Recovered message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
LAB/VC/BestecOven-1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

(continues on next page)

4.6. Mail Messages 21

https://linux.die.net/man/1/mail


panic Documentation

(continued from previous page)

Alarm receivers are:
somebody@cells.es
someone_else@cells.es

Other Active Alarms are:
DEBUG:Fri Nov 7 18:37:35 2008:OVENRUNNING and not PCISDOWN
OVENRUNNING:Fri Nov 7 18:37:17 2008:LAB/VC/BestecOven-1/MaxValue > 70

Past Alarms were:
OVENTEMPERATURE:Fri Nov 7 20:49:46 2008

22 Chapter 4. PyAlarm Device Server User Guide



CHAPTER 5

PANIC Recipes

5.1 Alarms Distribution

5.1.1 About distributing load (answer to paul bell, 2014)

We have 1200+ alarms and system works quite well with it. But regarding distribution of PyAlarm devices and servers
the rules must be more intelligent.

Instead of thinking in terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same
host or subsystem.

There are two reasons to do that (and also apply to Archiving):

• When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If
alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When
alarms are grouped by host you isolate the problems.

• Same applies for very event-intensive devices. Devices that generate a lot of information will need lower at-
trs/pyalarm ratio than devices that do not change so much.

Apart of that . . . if you have 1000 alarms just for the linac then you may have a wrong specification. I use to say than
“all” should be in the order of 10K ; by experience any number about that is too much. If you need more than 10K of
a kind what you really need is to add a level of abstraction (do not check all gauges of a vacuum section, just had an
attribute where you can read the max value).

It applies to all Tango systems I’ve seen (alarms, archiving, save/restore, pool, device tree, . . . ); if you reach a number
above 10K then you must add an abstraction layer. It’s not only that you reach a performance limit, also your users
will feel too dazed and confused when searching for things.

e.g. Our accelerator group requested 1200 alarms . . . and after some months they asked for a filter to show only the
240 they really care about.

23



panic Documentation

5.2 Alarm Formulas Examples

Contents

• Alarm Formulas Examples

– Sending a Test Message at Startup

– Testing a device availability

– Getting Tango state/attribute/value/quality/time/delta in formulas

– Creating a periodic self-reset alarm

– Enabling search, expression matching and list comprehensions

– Some list comprehension examples

– Grouping Alarms in Formulas

– Alarm on delta and value

– Generating Clock Signals

Alarms are parsed and evaluated using fandango.TangoEval class.

5.2.1 Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList -> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers -> DEBUG: test@tester.com

5.2.2 Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm
will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > 1e-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > 1e-4

5.2.3 Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception}

attribute: if no attribute name is given, then device state is read.

PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT

value: default, returns the value of the attribute

24 Chapter 5. PANIC Recipes

mailto:test@tester.com


panic Documentation

Pressure_Alarm: BL22/CT/EPS-PLC-01/CC1_AF.value > 1e-5

time: returns the epoch in seconds of the last value read

Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now-60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

Temperature_Alarm: BL22/CT/EPS-PLC-01/OP_WBAT_OH01_01_TC11.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size
AlarmThreshold+1)

Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

5.2.4 Creating a periodic self-reset alarm

A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties.
See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC:(FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

5.2.5 Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

any([ATTR_ALARM==s+'.quality' for s in FIND('dom/fam/*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

any([ATTR_ALARM==QUALITY(s) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an
<pre>event_received(. . . )</pre> hook.

5.2.6 Some list comprehension examples

any([s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

equals to

5.2. Alarm Formulas Examples 25

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time


panic Documentation

any(FIND(SR/ID/SCW01/Cooler*Err*))

The negate:

any([s==0 for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

any(not s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

not all(FIND(SR/ID/SCW01/Cooler*Err*))

is equivalent to

[s for s in FIND(SR/ID/SCW01/Cooler*Err*) if not s]

5.2.7 Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any(( ALARM_1 , ALARM_2 ))

or:

ALARM_ANY: any( FIND(my/alarm/device/ALARM_*) )

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

5.2.8 Alarm on delta and value

This alarm will be triggered whenever a channel (HV*Code attributes) changes its value (delta!=0) and the new value
is OFF (value=0)

any([(changed and value==0) for changed,value in

zip( FIND(bl*/vc/ipct*/hv*code.delta) ,

FIND(bl*/vc/ipct*/hv*code.value) )])

26 Chapter 5. PANIC Recipes



panic Documentation

5.2.9 Generating Clock Signals

Playing with PollingPeriod, AlarmThreshold and AutoReset properties is possible to achieve an square signal that
keeps the alarm active/inactive at regular intervals.

CLOCK=NOT CLOCK

The AlarmThreshold applies to both activation and reset of the alarm, so it has to be added to the AutoReset period
to regulate the duty cycle. Keeping the PollingPeriod and AutoReset values very small will generate an accurate
frequency (do not expect high accuracy, that’s a trick for testing but not a proper signal generator).

My values for a 10 seconds alarm cycle are:

.. code-block:: python

PollingPeriod = 0.1 AlarmThreshold = 50 AutoReset = 0.0001

If you want a more accurate alarm, you can also use the NOW() function. This example generates a switch every
second

CLOCK = NOW()%2<1
PollingPeriod=1
AlarmThreshold-1

5.3 AlarmStates

Contents

• AlarmStates

– State transitions

– Disabled States

– IEC 62682: AlarmStates Definition and related Actions

5.3.1 State transitions

Alarm States and Severities are defined in panic.properties module.

With PyAlarm > 6.1; GUI will read the current Alarm state from the AlarmList attribute.

For compatibility with older versions, the events of ActiveAlarms will be used instead:

• If ActiveAlarms doesn’t cotain tag, alarm.active will be 0, state = NORM

• Activealarms contains tag, alarm.active = activealarms timestamp, state = ACTIVE

• ActiveAlarms is None or Exception, alarm.active will be set to -1. state = ERROR

5.3.2 Disabled States

Their meanings are:

• OOSRV = Device server is Off (not exported), no process running

5.3. AlarmStates 27



panic Documentation

• DSUPR = Enabled property is False

• SHLVD = Alarm is listed in DisabledAlarms attribute (temporary disabled)

• ERROR = Device is alive but the alarm is not being evaluated (exported=1 and thread dead or exception).

5.3.3 IEC 62682: AlarmStates Definition and related Actions

Different annunciators can be setup for each State change

Reset() can be automatic or forced to be manual

Reminder() : Alarm still ACTIVE, additional action can be configured

RTNUN : Condition recovered (but not Reset) Alarm ACTIVE : (UNACKED) Alarm ACKED : (action taken by
operator) RTNUN: return to NORM NORM: after Reset() or not triggered

First peaks ignored if (t < polling*AlarmThreshold)

SHLVD, DSUPR, OOSRV: Unactive states.

SHELVED for temporary disabling,

DSUPR by process condition,

OOSRV is permanent (device disabled).

All of them are controlled by the Enable/Disable states/commands of PyAlarm.

In addition, PANIC adds ERROR State to raise problems with Tango devices.

5.4 Hierarchies In Alarms

Contents

• Hierarchies In Alarms

– TOP/BOTTOM

– Alarm GROUP

* Future Releases

5.4.1 TOP/BOTTOM

The TOP/BOTTOM just provides a filter for finding alarms where the value of another alarm is used directly in the
formula. It is case sensitive, so you can use lower/upper case to show/hide alarms in these filters.

To use hierarchies, alarms shall be written using the result of previous ones:

GAB1 = any([t >5 for t in FIND(tc1:10000/LMC/C01/GAB/*)])
GAB2 = any([t >5 for t in FIND(tc1:10000/LMC/C02/GAB/*)])
GAB_ALL= GAB1 or GAB2
OTHER = tc1:10000/LMC/C02/Other/State != ON
CAPITAL = GAB_ALL or OTHER

Then, the filter by hierarchy will return:

28 Chapter 5. PANIC Recipes



panic Documentation

TOP (alarms that depend on others): CAPITAL, GAB12
BOTTOM (alarms isolated or referenced from others): OTHER, GAB_ALL, GAB1, GAB2

In this case GAB_ALL appears in both lists; to avoid that just rewrite it using lower case attribute names:

GAB_ALL = any(FIND('lmc1:10000/lmc/alarms/01/gab*'))

Now you should have only “CAPITAL” as TOP Alarm.

You can reproduce this behaviour from the api calling:

panic.AlarmAPI().filter_hierarchy('TOP')

5.4.2 Alarm GROUP

For an expression matching multiple alarms or attributes, GROUP returns a new formula that will evaluate to True if
any of the alarm changes to active state (.delta) or matches a given condition:

GROUP(ALARM1, ALARM2, ALARM3)

Thus, GROUP will be activated when any of the three alarms switches to active; and immediately reset to wait for the
next change. In this way you get a notification for any new activation of the three alarms.

NOTE: BY DEFAULT IS NOT LIKE any(FIND(*)); it will react only on change, not taking in account previous
states!

NOTE2: you must tune your PyAlarm properties to have AlarmThreshold = 1 and AutoReset <= 3 to take profit of
this feature.

NOTE3: The GROUP activation will be just a peak when using .delta (default); take this in account when setting up
several levels of alarms as fast peaks may not be noticed if higher level alarms have long thresholds.

It uses the read_attribute schema from TangoEval, thus using .delta to keep track of which values has changed. For
example, GROUP(test/alarms/*/TEST_[ABC]) will be replaced by:

any([t.delta>0 for d in FIND(test/alarms/*/TEST_[ABC].all)])

But, as regular expressions may trigger unexpected results, the syntax with explicit ALARM names is prefered.

The GROUP macro can be called with one or several expressions separated by commas and a condition separated by
semicolon:

GROUP(expression1[,expression2;condition)

Expressions may contain a device name or not. If no device name is passed then it will search for it in the alarm list:

expression=[a/dev/name*/]attribute*

Thus, a valid GROUP expression is:

GROUP(LOCAL_ALARM1,t01:10000/an/alarm/dev/ALARM2)

Or

GROUP(LOCAL_ALARM1,t01:10000/an/alarm/dev/ALARM2;x>=1)

In the first case you’ll get a peak when any of them changes from 0 to 1; in the second case you’ll get if any of them
is already on 1 (so a change in the second alarm will not trigger a second peak).

5.4. Hierarchies In Alarms 29



panic Documentation

Future Releases

In future releases the GROUP macro will be capable of evaluating any tango attribute and not only alarms. As of 6.0
this feature is not yet supported

If the condition is empty then PyAlarm checks any .delta != 0. It can be modified if the formula contains a semicolon
“;” and a condition using ‘x’ as variable; in this case it will be used instead of delta to check for alarm:

GROUP(bl09/vc/vgct-*/p[12];x>1e-5) => [x>1e-5 for x in FIND(bl09/vc/vgct-*/p[12])]

5.5 Special Alarm Recipes

5.5.1 Special keys used in Alarm formulas

• DEVICE: PyAlarm device name

• DOMAIN,FAMILY,MEMBER: Parts of the device name

• ALARMS: Alarms managed by this device

• PANIC: API containing all declared alarms

• t: time since the device was started

• T(. . . ): string to time

• str2time(. . . ): string to time

• now, NOW(): current timestamp

• DEVICES: instantiated devices

• DEV(device): DeviceProxy(device)

• NAMES(expression’): Finds all attributes matching the expression and return its names.

• CACHE: Saved values

• PREV: Previous values

• READ(attr): TangoEval.read_attribute(attr)

• FIND(‘expression’): Finds all attributes matching the expression and return its values.

5.5.2 Expiration Date

Disabling or re-enabling after a given date

A temporal condition can be achieved using the T() macro in the formula.

To disable an Alarm after a given date:

T() < T('2013-04-23') and D/F/M.A > V1

To re-enable it after a maintenance period:

T() > T('2013-04-23') and D/F/M.A > V1

30 Chapter 5. PANIC Recipes



panic Documentation

5.5.3 Accessing PyAlarm Values CACHE

The PyAlarm CACHE dictionary contains the last values stored for each tango attribute that appeared in the formulas.
The size of cache is AlarmTrheshold + 1

Usage:

PASS_BY_0=[(k,v.time.tv_sec,str(v.value)) for k,t in CACHE.items() for v in t if v.
→˓value==0]

This will trigger alarm if ALL values in the cache are equal, it is NOT the same as Delta because it checks only the
first and last values:

not (lambda l:max(l)-min(l))([v.value for v in CACHE['wr/rf/circ-1/heartbeat']])

5.5.4 Clock: Alarm triggered by time

This alarm will be enabled/disabled every 5 seconds.

First, create a new PyAlarm device:

import fandango as fn
fn.tango.add_new_device('PyAlarm/Clock','PyAlarm','test/pyalarm/clock')

Add the new alarm (formula will use current time to switch True/False very 5 seconds)

from panic import AlarmAPI
alarms = AlarmAPI()
alarms.add(device='test/pyalarm/clock',tag='CLOCK',formula='NOW()%10<5')

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor('test/pyalarm/clock').start_servers(host='your_hostname')

Then, configure the device properties to react every second for both activation and reset:

dtest = alarms.devices['test/pyalarm/clock']
dtest.get_config()
dtest.config['Enabled'] = 1
dtest.config['AutoReset'] = 1
dtest.config['AlarmThreshold'] = 1
dtest.config['PollingPeriod'] = 1
alarms.put_db_properties(dtest.name,dtest.config)
dtest.init()

This is the result you can expect when plotting test/pyalarm/clock/CLOCK in a taurustrend:

5.6 Exception Management

Alarm properties that control if exceptions trigger alarms or not . . .

5.6. Exception Management 31



panic Documentation

‘RethrowState’: [PyTango.DevBoolean, “Whether exceptions in State reading will be rethrown.”, [ True
] ],#Overriden by panic.DefaultPyAlarmProperties

‘RethrowAttribute’: [PyTango.DevBoolean, “Whether exceptions in Attribute reading will be
rethrown.”, [ False ] ],#Overriden by panic.DefaultPyAlarmProperties

‘IgnoreExceptions’: [PyTango.DevBoolean, “If True unreadable values will be replaced by None in-
stead of Exception.”, [ True ] ],#Overriden by panic.DefaultPyAlarmProperties

5.7 Grouping Alarms

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1 ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any(( ALARM_1 , ALARM_2 ))

or:

ALARM_ANY: any( FIND(my/alarm/device/ALARM_*) )

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm
devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be
triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

5.8 How PyAlarm Device Server Works

This document tries to summarize how PyAlarm processes alarms and executes its actions. A full explanation of alarm
syntax and each property is available in the PyAlarm user guide, but here I provide a summary for convenience.

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device will share
a common evaluation environment determined by PyAlarm properties.

Contents

• How PyAlarm Device Server Works

– The AlarmAPI

– The updateAlarms thread

* AlertOnRecovery and AlarmReset

– The TangoEval engine

32 Chapter 5. PANIC Recipes



panic Documentation

5.8.1 The AlarmAPI

This object encapsulates the access to the alarm configurations database. Tango Database is used by default, all
alarm configurations are stored as device properties of each declared PyAlarm device (AlarmList, AlarmReceivers,
AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

5.8.2 The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod. All Enabled alarms will be evaluated
at each cycle; and if evaluated to a True value (understood as any value not in (0,”“,None,False,[],{})).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active. Then
the PyAlarm will process all elements of the AlarmReceivers list.

AlertOnRecovery and AlarmReset

Whenever an alarm formula becomes True; a counter starts to increase until it reaches the AlarmThreshold value,
becoming an active alarm.

This counter is kept at AlarmThreshold value and starts decreasing once the formula is no longer True. If the counter
reaches 0 (its minimum value) the alarm will be still active but its new state will be RECOVERED, an email will be
sent to receivers if AlertOnRecovery property is True.

Then, if the AlarmReset value (in seconds) is distinct from 0, a time count starts from the point of RECOVERY. If
there’s no change in the alarm state during this time count, the alarm will be automatically RESET (notifying receivers
or not depending on configuration).

So, if you need an alarm to have a fast recovery keep in mind that you’ll have to apply a delay equal to AlarmThresh-
old+PollingPeriod to the value that you have set as AutoReset.

5.8.3 The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value. It will also provide
several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1. This cache allows
to create alarms using .delta or inspecting the cache for specific behaviors.

5.9 PANIC Setup

by Sergi Rubio — 2006, 2016

Contents

• PANIC Setup

– Description

– Launch your PANIC System in few steps

* Dependencies

5.9. PANIC Setup 33



panic Documentation

* Get the code

* Setup your Tango database

* Run the panic application and configure your Alarms

* FestivalDS, Speech and pop-ups

5.9.1 Description

The Package for Alarms and Notification of Incidents from Controls

PANIC Alarm System is a set of tools (api, Tango device server, user interface) that provides:

• Periodic evaluation of a set of conditions.

• Notification (email, sms, pop-up, speakers)

• Keep a log of what happened. (files, Tango Snapshots)

• Taking automated actions (Tango commands / attributes)

• Tools for configuration/visualization.

Other Documentation in this same repository

• PANIC presentation at PCAPAC‘14: Panic Talk at PCAPAC‘14

• The Panic python API: PanicAPI.rst

• The PyAlarm User Guide: PyAlarmUserGuide.rst

• The Panic UI manual: panicdoc.html

5.9.2 Launch your PANIC System in few steps

Dependencies

You must have PyTango + Tango + MySQL up and running and your TANGO_HOST and PYTHONPATH environ-
ment variables properly set.

PyTango is available at PyPI: https://pypi.python.org/pypi/PyTango

Get the code

ALL OF THIS IS DEPRECATED; GET THE PACKAGES FROM https://github.com/tango-controls IN-
STEAD

Fandango library (functional tools for tango) is required to be in your PYTHONPATH:

svn co https://tango-cs.svn.sourceforge.net/svnroot/tango-cs/share/fandango/trunk/
→˓fandango fandango

You can download PyAlarm and the panic api from tango-ds at sourceforge:

svn co https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/SoftwareSystem/PyAlarm/
→˓trunk

The PANIC User Interface is available in the /clients branch:

34 Chapter 5. PANIC Recipes

https://pypi.python.org/pypi/PyTango


panic Documentation

svn co https://svn.code.sf.net/p/tango-ds/code/Clients/python/Panic/trunk

Setup your Tango database

Create your devices from a python console (or Jive):

import PyTango
db = PyTango.Database()

def add_new_device(server,klass,device):
dev_info = PyTango.DbDevInfo()
dev_info.name = device
dev_info.klass = klass
dev_info.server = server
get_database().add_device(dev_info)

#Create a PyAlarm device
add_new_device('PyAlarm/1','PyAlarm','test/alarms/1')

#I'll add a simulator, but you can't use TangoTest or whatever device you want:
add_new_device('PySignalSimulator/1','PySignalSimulator','test/sim/1')
db.put_device_property('test/sim/1',{'DynamicAttributes':['A=t%100']})

From shell, launch your PyAlarm and Simulator devices:

# python PyAlarm/PyAlarm.py 1 &
# python PySignalSimulator/PySignalSimulator.py 1 &

Create a TEST_ALARM using the API:

import panic
alarms = panic.api()
alarms.add('TEST_ALARM',formula='(test/sim/1/A%15 > 5)',description='test',receivers=
→˓'your@mail')

Run the panic application and configure your Alarms

python Panic/gui.py

See the application manual: http://plone.tango-controls.org/tools/panic/panic-ui/

If you want to see faster changes in the alarm cycle try to set the following configuration values (Tools->Adv.Config):

PollingPeriod = 1
AlarmThreshold = 1
AutoReset = 5
Notification Services

The syntax for sending an email (from linux, you’ll need the “mail” command available in the system, from windows
you’ll have to set as receiver a command from a device running in a linux machine):

5.9. PANIC Setup 35

http://plone.tango-controls.org/tools/panic/panic-ui/


panic Documentation

DeviceProxy("your/alarm/device").command_inout("SendMail",["Bonjour,\n\nthis is a
→˓test message\n\nau revoire","RE: testing","your-name@tango-controls.org"])

The other command we have for notification is SendSMS; but it requires our smslib.py file that is specific to our SMS
provider (it uses http transactions to send the messages). If you’re interested on it you’ll have to write your own
smslib.py file to use it.

FestivalDS, Speech and pop-ups

There’s another notification device you can use, the FestivalDS. It provides speech synthesizing and pop-ups in a linux
environment (it requires “festival” and “libnotify-bin” linux packages):

https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/InputOutput/FestivalDS/trunk

The commands are:

Play(string): speech to speakers
Beep(): beep!
Play_sequence(string): it just makes some beeps before and after the speech
PopUp(title,text,[seconds]): shows a pop-up with title/text for the given time

And that’s all regarding our current notifiers, for database we don’t have anything yet, as we use the device properties
to store all the data. You’ll find more information in the PyAlarm user guide.

5.10 Exception Management in Panic Alarms

The exception management will be done using the _raise=RAISE argument of the TangoEval.eval method.

Three properties control if exceptions will enable the alarm or will be simply ignored.

IgnoreExceptions if False then all exceptions will be registered as FailedAlarms and the PyAlarm
will change to FAULT whenever an exception is encountered. If no rethrow option is active,
FailedAlarms will be displayed in grey in AlarmGUI as “disabled”.

RethrowAttribute if True, any exception in the formula will set the alarm as active. PyAlarm state will
change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

RethrowState if True, only alarms reading State attributes will be activated by exception. PyAlarm state
will change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

So, in case of having an alarm reading a faulty attribute, the status of the alarm will be:

DISABLED If IgnoreExceptions=False and RethrowAttribute=False

NOT ACTIVE If IgnoreExceptions=True and RethrowAttribute=False

ACTIVE If IgnoreExceptions=False and RethrowAttribute=True

ACTIVE If IgnoreExceptions=True and RethrowAttribute=True

5.11 Using the PANIC python API

36 Chapter 5. PANIC Recipes



panic Documentation

Contents

• Using the PANIC python API

– The Panic Module

– Browsing existing alarms

– Adding / Removing alarms

– Modifying alarms

– Modifying a receiver in all alarms

5.11.1 The Panic Module

Panic contains the python AlarmAPI for managing the PyAlarm device servers from a client application or a python
shell. The panic module is part of the Panic bliss package.:

import panic
alarms = panic.api()

5.11.2 Browsing existing alarms

The AlarmAPI is a dictionary-like object containing Alarm objects for each registered Alarm tag. In addition the
AlarmAPI.get method allows caseless search by tag, device, attribute or receiver:

alarms.get(self, tag='', device='', attribute='', receiver='')

alarms.get(device='boreas')
Out[232]:
[Alarm(BL29-BOREAS_STOP:The BakeOut controller has been stop),
Alarm(BL29-BOREAS_PRESSURE_1:),
Alarm(BL29-BOREAS_PRESSURE_2:),
Alarm(BL29-BOREAS_START: BL29-BOREAS bakeout started
...]

alarms.get(receiver='eshraq')
Out[234]:
[Alarm(RF_LOST_EUROTHERM:),
Alarm(OVEN_COMMS_FAILED:Oven temperatures not updated in the last 5 minutes),
Alarm(RF_PRESSURE:The pressure in the cavity exceeds Range),
Alarm(OVEN_TEMPERATURE:The Temperature of the Oven exceeds Range),
Alarm(RF_EUROTHERM:),
Alarm(RF_LOST_MKS:),
Alarm(RF_TEMPERATURE_MAX2:),
...]

alarms['RF_LOST_MKS'].receivers
Out[237]: '%SRUBIO,%ESHRAQ,%VACUUM,%LOTHAR,%JNAVARRO'

5.11.3 Adding / Removing alarms

The add/remove methods take care of properties modification:

5.11. Using the PANIC python API 37



panic Documentation

alarms.add('RF_ON_FIRE','rf/ct/alarms',formula='rf/ct/plc-01/temperature>1000.',
→˓message='FIRE!',receivers='rf@cells.es,plc@cells.es')

alarms.remove('RF_ON_FIRE')

5.11.4 Modifying alarms

Each Alarm object contains strings with its configuration, if you modify it you must call Alarm.write() method to
update the alarm device. An Alarm.rename() method is also available.

In [235]: alarms[‘RF_LOST_MKS’].device Out[235]: ‘sr/rf/alarms’

In [236]: alarms[‘RF_LOST_MKS’].formula Out[236]: ‘SR/RF/VGCT-01/State==UNKNOWN or
SR/RF/VGCT-02/State==UNKNOWN’

In [237]: alarms[‘RF_LOST_MKS’].receivers Out[237]: ‘%SRU-
BIO,%ESHRAQ,%VACUUM,%LOTHAR,%JNAVARRO’

In [238]: alarms[‘RF_LOST_MKS’].write()

5.11.5 Modifying a receiver in all alarms

And a fast way for updating alarm receivers:

[a.replace_receiver('%DFERNANDEZ','%SRUBIO') for a in alarms.get(receiver='fernandez
→˓')]

5.12 PanicAdminUsers property

Contents

• PanicAdminUsers property

The PanicAdminUsers property will contain all users enabled to modify an alarm.

Although, any user identified as an email receiver of an alarm will be allowed to change it.

The propery is check from the get_admins_for_alarm() method in AlarmAPI.

The method will be used to call the setAllowedUsers() of a validator plugin.

The methods that the i*ValidatedWidget decorator requires of a validator are:

• setLogging()

• setAllowedUsers()

• setLogMessage()

• exec_()

User validation in the GUI will be kept for consecutive actions as long as the allowed users list for each action doesn’t
change. If a new action is required on an Alarm with different receivers, the login will be asked again.

The login will be kept for a time defined by PyAlarm.PanicUserTimeout property. This time is 60 seconds by default.

38 Chapter 5. PANIC Recipes



panic Documentation

5.13 PyAlarm Startup Modes

The PyAlarm Startup is controlled by StartupDelay and Enabled properties.

StartupDelay will put the PyAlarm in PAUSED state after a restart; to not start to evaluate formulas immediately but
after some seconds, thus giving time to other devices to start.

The Enabled property will instead control the notification actions:

• If False, no notification will be triggered.

• If True, all notifications can be sent once StartupDelay has passed.

• If a Number is given, all notifications triggered between startup and t+Enabled will be ignored.

• Enabled>(AlarmThreshold*PollingPeriod): “Silent restart”, activates the Alarms that were pre-
sumably active before a restart; but do not retriggers the notifications.

Enabled = 120 is the typical case; not triggering notifications until the device has been running for at least 3
minutes.

If Enabled = False or while t < Start+Enabled the PyAlarm State will be DISABLED.

5.14 PyAlarm timing configuration

• StartupDelay: the device will wait before starting to evaluate the alarms (e.g. giving some time to the system to
recover from a powercut).

• Enabled: if False or 0 the PyAlarm it equals to disabling all alarm actions of the device; if it is True the behavior
will be the normal expected; if it has a numeric value (e.g. 120) it means that the device will evaluate the alarms
but not execute actions during the first 120 seconds (thus alarms can be activated but no action executed). It is
used to prevent a restart of the device to re-execute all alarms that were already active.

• EvalTimeout: The proxy timeout used when evaluating the attributes (any read attribute slower than timeout
will raise exception).

• AlarmThreshold: number of cycles that an alarm must evaluate to True to be considered active (to avoid alarms
on “glitches”).

• RethrowAttribute/RethrowState: Whether exceptions on reading attributes or states should be rethrown to higher
levels, thus causing the alarm to be triggered. By default alarms are enabled if an State attribute is not readable
(RethrowState=True), but when a numeric attribute is not readable its value is just replaced by None (RethowAt-
tribute=False) and the formula evaluated normally.

• Reminder: A new email will be sent every XX seconds if the alarm remains active. When AlertOnRecovery is
True an email will be sent also every time when the formula result oscillates from True to False.

• UseProcess: This is an experimental feature, like UseTaurus and others. In general, I advice you to not modify
any parameter that is not detailed in the PyAlarm user guide as you may obtain unexpected results. Some
parameters are used to test new features still under development and their behavior may vary between commits.

Regarding actions on recovery . . . this option is planned but not yet fully available. Actually just emails are sent when
AlertOnRecovery is True. This feature may be implemented in the next 6 months or so but the syntax is still to be
decided.

5.15 Testing your PyAlarm installation

This script will check the current performance of your PyAlarm devices:

5.13. PyAlarm Startup Modes 39



panic Documentation

> TANGO_HOST=your_hostname:10000 python panic/extra/report.py check

5.16 PANIC Receivers, Logging and Actions

Contents

• PANIC Receivers, Logging and Actions

– Alarm Receivers

– SMS / Mail Config

– Global Receivers

– Logging

* Local LogFile

* Remote LogFile

* Using SNAP database

– Triggering Actions from PyAlarm

5.16.1 Alarm Receivers

Allowed receivers are email, sms, action and shell commands.

5.16.2 SMS / Mail Config

These CLASS properties will control how SMS and Mail is configured:

SMSConfig

SMSMaxLength

SMSMaxPerDay

FromAddress

MailMethod

5.16.3 Global Receivers

The PyAlarm class property “GlobalReceivers” allows to set receivers that will be applied to all Alarms; independently
of the device that is managing them.

The syntax is:

GlobalReceivers
{regexp}:{receivers}
.*:oncall@facility.dom

40 Chapter 5. PANIC Recipes



panic Documentation

5.16.4 Logging

Alarm logging can be managed in three ways: local logs, remote logs via FolderDS or Snapshoting.

All the logging methods support defined variables ($ALARM, $DATE, $DEVICE, $MESSAGE, $VALUES, $. . . )

Local LogFile

Simply set the LogFile property to your preferred local file path:

LogFile = /tmp/pyalarm/$NAME_$DATE_$MESSAGE.log

Remote LogFile

You can use the fandango.FolderDS device to specify a remote logfile destination on the LogFile property:

# LogFile = tango://[folderds/device/name]/[logfile_name]
LogFile = tango://sys/folder/panic-logs/$NAME_$DATE_$MESSAGE.log

You can have both local and remote logging by setting LogFile to a local file and adding an ACTION receiver:

LogFile = /tmp/pyalarm/$NAME_$DATE_$MESSAGE.log

AlarmReceivers = ACTION(alarm:command,controls02:10000/test/folder/tmp-folderds/
→˓SaveText,

'$NAME_$DATE_$MESSAGE.txt','$REPORT')

FolderDS documentation: https://github.com/tango-controls/fandango/blob/documentation/doc/devices/FolderDS.rst

Using SNAP database

This database logging will save the alarm state and all associated attributes every time that the alarm is activated/reset.

You should have configured previously an Snapshoting Database (java/mysql service by Soleil).

Then you have to:

• Set the CreateNewContexts property of PyAlarm to True (it will automatically create a new context on alarm
triggering)

• Or create manually a new context in the database using Bensikin.

• Set UseSnap=True to trigger snapshots for all alarms

• Or simply add the SNAP receiver.

Creating a context manually instead of doing it with PyAlarm may allow you to store Tango attributes that do not
appear in the formula, thus enabling a sort of alarm-triggered archiving mode.

5.16.5 Triggering Actions from PyAlarm

See basic details on the user guide:

https://github.com/tango-controls/PANIC/blob/documentation/doc/PyAlarmUserGuide.rst#id20

Here you have some more examples:

5.16. PANIC Receivers, Logging and Actions 41

https://github.com/tango-controls/fandango/blob/documentation/doc/devices/FolderDS.rst
https://github.com/tango-controls/PANIC/blob/documentation/doc/PyAlarmUserGuide.rst#id20


panic Documentation

# Send an email (equivalent to just %MAIL:address@mail.com)
%SENDMAIL:ACTION(alarm:command,lab/ct/alarms/SendMail,$DESCRIPTION,$ALARM,
→˓address@mail.com)

# Reset another alarm, DONT USE [] TO CONTAIN ARGUMENTS!
%RESET:ACTION(alarm:command,test/pyalarm/logfile/resetalarm,'TEST','$NAME_$DATE_
→˓$DESCRIPTION')

# Reload another device
%INITLOG:ACTION(alarm:command,test/pyalarm/logfile/init)

# Write a tango attribute
%WRITE:ACTION(alarm:attribute,sys/tg_test/1/string_scalar,'$NAME_$DATE_$VALUES')

# Execute a command in another tango host
# in this example a FolderDS saves the alarm log
%LOG:ACTION(alarm:command,controls02:10000/test/folder/tmp-folderds/SaveText,'$NAME_
→˓$DATE_$MESSAGE.txt','$REPORT')

Then declare the AlarmReceivers like:

ACTION(alarm:command,mach/dummy/motor/move,int(1),int(10))
ACTION(reset:attribute,mach/dummy/motor/position,int(0))

The first field is one of each PyAlarm.MESSAGE_TYPES:

ALARM
ACKNOWLEDGED
RECOVERED
REMINDER
AUTORESET
RESET
DISABLED

Available keywords (managed by PyAlarm.parse_devices()) in ACTION are:

$TAG / $NAME / $ALARM
$DEVICE
$DATE / $DATETIME
$MESSAGE
$VALUES
$REPORT
$DESCRIPTION

5.17 PyAlarm Using Events With Taurus

5.17.1 Setting up a PyAlarm getting Tango events from Taurus

We will test events using the CLOCK alarm created in the previous recipe (polling should be enabled, this example
uses polling on CLOCK attribute at 10 ms):

https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#
clock-alarm-triggered-by-time

Then, create a new PyAlarm device and the event-based alarm:

42 Chapter 5. PANIC Recipes

https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time
https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time


panic Documentation

import fandango as fn
fn.tango.add_new_device('PyAlarm/events','PyAlarm','test/pyalarm/events')

from panic import AlarmAPI
alarms = AlarmAPI()
alarms.add(device='test/pyalarm/events',tag='EVENTS',formula='test/pyalarm/clock/clock
→˓')

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor('test/pyalarm/events').start_servers(host='your_hostname')

Then, configure the device properties to read attributes using Taurus and react as fast as possible Taurus will take care
of subscribing to events and update cached values.

dtest = alarms.devices['test/pyalarm/events']
dtest.config['UseTaurus'] = True
dtest.config['AutoReset'] = 0.05
dtest.config['Enabled'] = 10
dtest.config['AlarmThreshold'] = 1
dtest.config['PollingPeriod'] = 0.05
alarms.put_db_properties(dtest.name,dtest.config)
dtest.init()

This is the result you can expect when showing both alarm attributes (test/pyalarm/clock/clock and
test/pyalarm/events/events) in a taurustrend:

5.17.2 Is this approach really Event-Based?

Yes, but not asynchronously. PyAlarm will use Taurus to catch Tango Events and buffer them; but alarms are still
triggered by the internal polling thread of PyAlarm. It means that the PyAlarm.PollingPeriod property effectively
filters how often incoming events are processed.

But, delegating event collection to Taurus allows to not execute read_attribute in the polling thread; allowing to very
small PollingPeriod values (10-20 ms)

As seen in this picture, it allows to have a very fast reaction from the Alarm attributes respect to the trigger:

This approach, however, is costly in terms of cpu usage if using polling periods below 100 ms. A pure-asynchronous
event implementation of the PyAlarm is still pending.

5.17. PyAlarm Using Events With Taurus 43



panic Documentation

44 Chapter 5. PANIC Recipes



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

45


	PANIC Description
	PANIC, a python Alarm System for TANGO

	Changelog
	PANIC 7.3.0
	PANIC 6.3.1
	PANIC 6.2.1
	PANIC 6.0
	Release 5.4 - 2015/12
	Release 5.2 - New evaluate() from API/GUI, added user admins for alarms
	Release 5.1 - May 2015
	Release 5.0 - May 2015
	Release 4.20

	Installing PANIC on a New System
	Dependencies
	Run the GUI and create a PyAlarm
	Run the PyAlarm Server

	PyAlarm Device Server User Guide
	Description
	Internal Structure
	Alarm Syntax Recipes
	PyAlarm Device Properties
	Device Server Example
	Mail Messages

	PANIC Recipes
	Alarms Distribution
	Alarm Formulas Examples
	AlarmStates
	Hierarchies In Alarms
	Special Alarm Recipes
	Exception Management
	Grouping Alarms
	How PyAlarm Device Server Works
	PANIC Setup
	Exception Management in Panic Alarms
	Using the PANIC python API
	PanicAdminUsers property
	PyAlarm Startup Modes
	PyAlarm timing configuration
	Testing your PyAlarm installation
	PANIC Receivers, Logging and Actions
	PyAlarm Using Events With Taurus

	Indices and tables

