

Welcome to panic’s documentation!

PANIC is a set of tools (api, Tango device server, user interface) that provides:

	Periodic evaluation of a set of conditions.

	Notification (email, sms, pop-up, speakers)

	Keep a log of what happened. (files, Tango Snapshots)

	Taking automated actions (Tango commands / attributes)

	Tools for configuration/visualization

Contents:

	PANIC Description
	PANIC, a python Alarm System for TANGO

	Changelog
	PANIC 7.3.0

	PANIC 6.3.1

	PANIC 6.2.1

	PANIC 6.0

	Release 5.4 - 2015/12

	Release 5.2 - New evaluate() from API/GUI, added user admins for alarms

	Release 5.1 - May 2015

	Release 5.0 - May 2015

	Release 4.20

	Installing PANIC on a New System
	Dependencies

	Run the GUI and create a PyAlarm

	Run the PyAlarm Server

	PyAlarm Device Server User Guide
	Description

	Internal Structure

	Alarm Syntax Recipes

	PyAlarm Device Properties

	Device Server Example

	Mail Messages

	PANIC Recipes
	Alarms Distribution

	Alarm Formulas Examples

	AlarmStates

	Hierarchies In Alarms

	Special Alarm Recipes

	Exception Management

	Grouping Alarms

	How PyAlarm Device Server Works

	PANIC Setup

	Exception Management in Panic Alarms

	Using the PANIC python API

	PanicAdminUsers property

	PyAlarm Startup Modes

	PyAlarm timing configuration

	Testing your PyAlarm installation

	PANIC Receivers, Logging and Actions

	PyAlarm Using Events With Taurus

Indices and tables

	Index

	Module Index

	Search Page

PANIC Description

PANIC, a python Alarm System for TANGO

Contents

	PANIC Description

	PANIC, a python Alarm System for TANGO

	Description

	Other Project pages

	PyAlarm Device Server

	Panic GUI

	Authors

	LICENSE AND WARRANTY

Description

PANIC is a set of tools (api, Tango device server, user interface) that provides:

	Periodic evaluation of a set of conditions.

	Notification (email, sms, pop-up, speakers)

	Keep a log of what happened. (files, Tango Snapshots)

	Taking automated actions (Tango commands / attributes)

	Tools for configuration/visualization

The Panic package contains the python AlarmAPI for managing the PyAlarm device servers from a client
application or a python shell. The panic module is used by PyAlarm, Panic Toolbar and Panic GUI.

PANIC IS TESTED ON LINUX ONLY, WINDOWS/MAC MAY NOT BE FULLY SUPPORTED IN MASTER BRANCH

The optional panic submodules are:

panic.ds : PyAlarm device server
panic.gui : Placeholder for the PanicGUI application

See the docs at: http://www.pythonhosted.org/panic

Recipes are also available at: https://github.com/tango-controls/PANIC/tree/documentation/doc/recipes

Get the latest release of Panic from: https://github.com/tango-controls/PANIC/releases

See CHANGE log in panic/CHANGES file

Other Project pages

	http://www.tango-controls.org/community/projects/panic-alarm-system

	https://github.com/tango-controls/panic

	https://pypi.python.org/pypi/panic

PyAlarm Device Server

panic.ds.PyAlarm Device Class

PyAlarm is the alarm device server used by ALBA Alarm System, it requires PyTango and Fandango modules,
both available from tango-cs.sourceforge.net

Some configuration panels in the GUI require PyAlarm to be available in the PYTHONPATH, to do so you can
add the PyAlarm.py folder to the PYTHONPATH variable or copy the PyAlarm.py file within the panic folder;
so it could be loaded as a part of the module.

Panic GUI

panic.gui.AlarmGUI Class

Panic is an application for controlling and managing alarms. It depends on panic and taurus libraries.

It allows the user to visualize existing alarms in a clear form and adding/editing/deleting alarms.
In edit mode user can change name, move alarms to another device, change descriptions and modify formulas.
Additional widgets in which the app is equipped allows alarm history viewing, phonebook editing and
device settings manipulation.

Authors

Sergi Rubio
Alba Synchrotron 2006-2016

LICENSE AND WARRANTY

see LICENSE file [https://github.com/tango-controls/fandango/blob/documentation/LICENSE]

Changelog

PANIC 7.3.0

	7.3.0

	solve disabled bug, add event pushing
save regexp of userfilters between ()
allow multiple disable/acknowledge
Merge branch ‘documentation’
fix setup.py

7.2.3 - fix bug on snaps widget
7.2.2 - fix bug when UserTimeout is not specified
7.2.1 - Merge panic-wiki-links by s2Innovation

PANIC_DEFAULT deprecated as option
Merge branch ‘S2Innovation-panic-2-wiki-links’ into develop
Solve bug on empty PanicUserTimeout property
Merge branch ‘panic-2-wiki-links’ of https://github.com/S2Innovation/PANIC into S2Innovation-panic-2-wiki-links

7.2.0 - added back taurus3 compatibility, solved bug on history widget

7.1.2 - Solved bugs at gui startup

7.1.1 - Solved bugs on server init, add test_telegram.py

7.1.0 - Merged pull requests from github

S2Innovation: Solve -r problems, added MailRDashOptio for backwards compatibility
Gabriel Jover: Add Telegram messaging, using SendTelegram command and TGConfig property
Daniel Roldan: patch in setup.py for Debian packaging

7.0.0 AlarmHandler compatibility, use TANGO properties instead of PyAlarm class

6.5.1 Fixes on new/delete alarms by s2innovation

6.5.0: Fix New Alarm button bug

“New Alarm” button fix by S2innovation
Improve Status Message
update kpi

6.4.1: solved high cpu issues in pyalarm

Solve High CPU bug: init_callbacks(50ms) added to panic.engine and PyAlarm
fix case bug in panic.view.check_multi_host
Avoid api.devices clear during load, do 1by1 update instead

Temporary patch: Multiple disabling/ack disabled to
prevent PyAlarm exceptions. see CS4-526
Add Enabled sorting as “PreCondition” to sort alarms by operation modes
Solve bugs on editing formulas or looking at remote values
remove unnecessary imports
Solve bug on writing arrays on ACTION
Execute SNAP/actions on DEBUG Alarms (only sms ignored)
Add warning on reset of active alarms
Remove unused severity checkboxes from main window
(replaced by priority filter)
Force devices update on PhoneBook values change
remove wrong multi-host warning
Return exception strings on evaluation from client

Add warnings on modifying Device config, unify calls on gui/editor
Add exceptions on wrong tag name, use UNACK as active state
Extend regexp syntax to key=value and & clauses
add minimal widget for panic system status

PANIC 6.3.1

PANIC 7 GUI is ready. PanicEngine/PanicViewDS devices are pending.

Added QAlarmPanels, searches and userfilters to GUI

Zillions of bugs solved.

PANIC 6.2.1

IEC & Elettra compatibility, QAlarmPanel widget, new GUI usable

AlarmSummary/GetAlarmInfo added to PyAlarm for GUI connection; format agreed with Elettra for cross-compatibility
Requires Fandango > 13.2
Alarm States and Fields renamed to match IEC terminology
New GUI using AlarmView to query attribute values as arrays,
AlarmView backwards compatibility with Panic <6
Performance improvement using latest Fandango (cached DB/DeviceProxy searches)
Split and refactor gui module in gui/actions/views
New Alarm object state machine based on json-like arrays (AlarmSummary)
Increase ERROR alarms visibility
Allow ‘~’ for negated regexp searches
New QAlarmPanel widget
New methods for .json exporting / web browsing
Many GUI bugs solved
Add ArchivingBrowser launcher to toolbar
Solve validation issues on AlarmForm editor
API refactoring, solved internal imports problem

PANIC 6.0

Package refactored to build valid system/PIP/rpm packages
PANIC Migrated to github.
Development moved to develop branch, stable to master

Main new features:

	enhanced logs and actions

	properties managed in the API side

	added multiple test cases

	added GlobalReceivers and Defines

	logs: record local or remote using text or json

	enabled plugin methods for user validation

	solved many, many bugs

Dropped features from this release:

	gui refactoring

	alarm collections

	IEC compliance (in progress)

	kibana integration

Summary of changes since PANIC 5.4 (Last Sourceforge release):

PyAlarm device server:

All panic times are now seconds, added deprecated message for pollings in milliseconds
Quality of failed alarms set to INVALID (~DISABLED)

Solve bug on PyAlarm.GenerateReport command
Solve bug on “zombie” alarm deleted/removed
Move Reset notification to send_alarm()
Replace phonebook entries on ACTION receivers
reload global_receivers on init()

free_alarm and send_alarm methods refactored for better actions
Added SendAlarm as command
kill/pause events added
Added MemUsage/LastUpdate attributes
Properties definition moved to panic.properties
Add invalid quality to disabled alarms
Add FAULT state when many alarms are failed
Add LastUpdate and MemUsage attributes
Avoid update_locals to reread attributes if check=False
Add receiver defines: $ALARM/TAG/NAME/DEVICE/DESCRIPTION/VALUES/REPORT/DATE/JSON

Implement Pause() command and kill/pause methods for thread management.
LogFiles capable of saving remotely using fandango.device.FolderDS

Solved bugs on trigger_action (see documentation on github)
Properties definition moved to panic.properties
Added global receivers property
Add Reports Cache, refactor send_alarm logging
Refactor PyAlarm.parse_receivers
Alarm actions will be executed before mail and snapshot.
Added replacement of $DESCRIPTION,$ALARM in actions

	GUI:

	New panic Icon
Reduce gui dependencies to speed up startup
GUI adapted to Taurus 4
launcher renamed to just “panic”
Solve GUI bug on empty ActiveAlarms attribute
Solve getParams deprecation on Taurus4
Added User login access via UserValidator widget

API:

Logging added to AlarmAPI
Added Alarm.disabled flag
to_dict and ping() methods for Alarms and AlarmDS objects
get_active_alarms() method added to AlarmDS
AlarmDS.Enable/Disable methods now can enable both Devices and individual Alarms
Added export_to_csv and export_to_dict API methods
panic.Evaluate() timeout set to 1000.
allow multiple filters on GlobalReceivers
Add test cases for Group/Action/Clock/Reset
Solve API bug on empty receivers
Solve bug on AlarmAPI.put_db_properties (Wrote to device instead of free property)
Solve bug in AlarmsAPI.get_global_properties
Solved bug on phonebook parsing
Group macro refactored (see documentation/recipes)
Add api.split_formula()
Change api.evaluate() timeout and checks

Release 5.4 - 2015/12

Changes in API and device server to solve several multi-host evaluation issues.
Small patches required by SKA project.

Release 5.2 - New evaluate() from API/GUI, added user admins for alarms

evaluate() method adapted to be usable by GUI and test evaluation on a remote PyAlarm device
Bug solved on SentEmails recording.

Release 5.1 - May 2015

PyAlarm: added try/except to update_locals() method
API: get_admins_for_alarm() method added to enable some minimal access control.

Release 5.0 - May 2015

NOTE: Requires Fandango update, to use NaN values and new TangoEval macros

API: Improved group macro to use only cached values for evaluation
API: Improved caselessness on API
Eval: Added EvalTimes dictionary to keep the time needed on each EvaluateFormula() call.
Eval: Added DEVICE, ALARMS, PANIC objects to locals()
Eval: Added own Attribute values to Eval cache to avoid deadlocks when evaluating itself
Enabled property, converted from string to DevVarStringArray to allow time and formulas
Attributes: Removed locks from read methods (UI was locking the evaluation trend), lock is needed only on write/update actions
Solved bug that didn’t send VALUES on State/Attribute exception
RethrowAttribute, from boolean to string to allow choosing False/0/NaN/None
Emails: solved problems string arrays and ‘r’ and ‘”’ characters
Traces: shortened strings

Release 4.20

@pending: solve threads and UseProcess issues
MaxAlarmsPerDay property removed (was unused)
Added new GROUP macro to formula evaluation.
SnapContext: Using modify instead of create context when this already exists
Added methods to taurus-like get_model from alarms
Email report refactored to show values in rows and parse state values.
Added methods do import/export alarm configurations from .csv files
EvaluateFormula converted in a Tango command callable by clients
Solved bugs using SNAP as receiver.
Snap: Using newest context when several match the alarm name
Eval cache reduced to AlarmThreshold+1 to adjust .delta to AlarmThreshold
Solved bug in SMS sending when source contains non-alpha characters

Release 4.19
@pending: solve threads and UseProcess issues
Solved bugs in alarm parsing, loading .csv and loading alarms from device
Added AlarmValueLabel widget

Release 4.18
Disable screen in launch script, replaced by Tango logging
Added DDebug device for debugging threads
AlarmsAPI.load() time consumption reduced to avoid timeouts
RethrowState=False and RethrowAttribute=False will disable exception propagation from TangoEval, it allows to manage exceptions as None in the alarm formulas.
Added IgnoreExceptions property
Using polling period instead of timeout as keeptime on TangoEval
Renamed method get_attribute_values to get_last_values

In AlarmAPI:

Added filter_alarms, export_to_csv, modify methods
get/filter* methods modified to allow custom alarm lists
Bugs solved in load_from_csv
getCurrent will return last API instance used

Added IgnoreExceptions property
children() replaced by get_basic_alarms method
parse_variables replaced by parse_attributes and evaluate()

Release 4.17 2013/09/09

Added VersionNumber attribute
Added methods Status/dev_status to remove automatic messages on qualities.
Added self.update_locals() for a better update of alarm values, periods and conditions reviewed.
fandango.threads.WorkerProcess has been optimized, PyAlarm modified to use new pause method
Methods returning sorted lists

Release 4.16

References to taurus removed if UseTaurus property is False (default)
Minimum polling reduced to 250 ms
Using panic.PyAlarmDefaultProperties to have consitency between api/gui/device
Solved bug that caused timeouts on alarm exception (time wait before finally clause)
Disable method is now capable to disable alarms only for TIMEOUT argument
If Enabled property is an integer, alarm changes will be ignored for INT seconds at startup; it should allow to restart devices w/out resending all active alarms; a ResetAll() can be used to rethrow all messages if wanted.
CheckDisabled will manage alarm reactivation after timeout

The Panic module has been renamed to panic; several bugs have been solved and methods for enabling/disabling alarms have been added.

4.15 September 2012
Disabled LogFile by default
BETA: Cache added to TangoEval to try alarm on transition.

4.14, September 2012
Added StartupDelay property
Bugs solved in Snap context creation.
Added user message to alarm RESET emails.

Installing PANIC on a New System

Dependencies

PANIC is available from Github, PyPI and as Debian or SuSE packages.

If you install from SuSE or Debian packages dependencies will be automatically installed.

If not, then you’ll need Tango, PyTango and Fandango for the server side (including its dependencies, ZMQ, numpy, …).

For the client side you’ll also need Taurus library and PyQt4.

You should be able to get all these packages also from www.tango-controls.org

Run the GUI and create a PyAlarm

Running “setup.py install” should install the panic-gui script in your system.

But if you don’t want to install the application you can just run python panic/gui/gui.py to launch the client.

In your first run it will apply completely empty. Just create your first PyAlarm instance going to the “Config” icon in the toolbar and pushing “Create New” button.

Now you can create your first PyAlarm pushing “New” in the main widget. You’ll be prompted to fill the gaps, for a first installation I recommend this alarm:

TAG: TEST_LOG
Description: just testing
Severity: WARNING
Receivers: your_mail@your_domain.com
Formula: True

This simple alarm will allow you to check if email sending works properly.

Run the PyAlarm Server

Use Astor or the shell to start your newly created PyAlarm:

python ds/PyAlarm.py TEST -v4

After ~45 seconds (if you didn’t modified the default configuration) you’ll receive your first email from PANIC.

Now head to the configuration docs to know all the options you have for tuning the behaviour.

PyAlarm Device Server User Guide

Contents

	PyAlarm Device Server User Guide

	Description

	Internal Structure

	The AlarmAPI

	The updateAlarms thread

	The TangoEval engine

	Alarm Syntax Recipes

	Sending a Test Message at Startup

	Testing a device availability

	Getting Tango state/attribute/value/quality/time/delta in formulas

	Creating a periodic self-reset alarm

	Enabling search, expression matching and list comprehensions

	Some list comprehension examples

	Grouping Alarms in Formulas

	PyAlarm Device Properties

	Distributing Alarms between servers

	Alarm Declaration Properties

	AlarmList

	AlarmDescriptions

	AlarmReceivers

	Adding ACTION as receiver

	PhoneBook (not implemented yet)

	REMINDER / RECOVERED / AUTORESET messages

	Reminder

	AlertOnRecovery

	AutoReset

	Snapshot properties

	UseSnap

	CreateNewContexts

	Alarm Configuration Properties

	Device Server Example

	Mail Messages

	Format of Alarm message

	Format of Recovered message

Description

This device server is used as a alarm logger, it connects to the list of attributes provided and verifies its values.

Its focused on notifying Alarms by log files, Mail, SMS and (some day in the future) electronic logbook.

You can acknowledge these alarms by a proper command.

Internal Structure

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device
will share a common evaluation environment determined by PyAlarm properties.

The AlarmAPI

This object encapsulates the access to the alarm configurations database.
Tango Database is used by default, all alarm configurations are stored as device properties
of each declared PyAlarm device (AlarmList, AlarmReceivers, AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod.
All Enabled alarms will be evaluated at each cycle; and if evaluated to a True value (understood as any value not in (0,”“,None,False,[],{})).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active.
Then the PyAlarm will process all elements of the AlarmReceivers list.

The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value.
It will also provide several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1.
This cache allows to create alarms using .delta or inspecting the cache for specific behaviors.

Alarm Syntax Recipes

Alarms are parsed and evaluated using fandango.TangoEval class.

Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList -> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers -> DEBUG: test@tester.com

Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > 1e-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > 1e-4

Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception}

attribute: if no attribute name is given, then device state is read.

PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT

value: default, returns the value of the attribute

Pressure_Alarm: BL22/CT/EPS-PLC-01/CC1_AF.value > 1e-5

time: returns the epoch in seconds of the last value read

Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now-60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

Temperature_Alarm: BL22/CT/EPS-PLC-01/OP_WBAT_OH01_01_TC11.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size AlarmThreshold+1)

Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

Creating a periodic self-reset alarm

A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties. See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC:(FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

any([ATTR_ALARM==s+'.quality' for s in FIND('dom/fam/*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

any([ATTR_ALARM==QUALITY(s) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an <pre>event_received(…)</pre> hook.

Some list comprehension examples

any([s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

equals to

any(FIND(SR/ID/SCW01/Cooler*Err*))

The negate:

any([s==0 for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

any(not s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

not all(FIND(SR/ID/SCW01/Cooler*Err*))

is equivalent to

[s for s in FIND(SR/ID/SCW01/Cooler*Err*) if not s]

Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any((ALARM_1 , ALARM_2))

or:

ALARM_ANY: any(FIND(my/alarm/device/ALARM_*))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

PyAlarm Device Properties

Distributing Alarms between servers

Alarms can be distributed between PyAlarm servers using the PyAlarm/AlarmsList property. A Panic system works well with 1200+ alarms distributed in 75 devices, with loads between 5 and 70 attrs/device. But instead of thinking in terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same host or subsystem.

There are two reasons to do that (and also apply to Archiving):

	When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When alarms are grouped by host you isolate the problems.

	Same applies for very event-intensive devices. Devices that generate a lot of information will need lower attrs/pyalarm ratio than devices that do not change so much.

But, it is a good advice to keep the overall number of alarms in the system below 10K alarms. For manageability of the log system and avoid avalanches of useless information the logical number of alarms should be around or below 1000.

Alarm Declaration Properties

AlarmList

Format of alarms will be:

TAG1:LT/VC/Dev1
TAG2:LT/VC/Dev1/State
TAG3:LT/VC/Dev1/Pressure > 1e-4

NOTE: This property was previously called AlarmsList; it is still loaded if AlarmList is empty for backward compatibility

AlarmDescriptions

Description to be included in emails for each alarm. The format is:

TAG:AlarmDescriptions...

NOTE: Special Tags like $NAME (for name of PyAlarm device) or $TAG (for name of the Alarm) will be automatically replaced in description.

AlarmReceivers

TAG1:vacuum@accelerator.es,SMS:+34935924381,file:/tmp/err.log
vacuum@accelerator.es:TAG1,TAG2,TAG3

Other options are SNAP or ACTION:

user@cells.es,
SMS:+34666777888, #If SMS sending available
SNAP, #Alarm changes will be recorded in SNAP database.
ACTION(alarm:command,mach/alarm/beep/play_sequence,$DESCRIPTION)

Or Telegram messages, see:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/TelegramSetup.rst

Adding ACTION as receiver

Executing a command on alarm/disable/reset/acknowledge:

ACTION(alarm:command,mach/alarm/beep/play_sequence,$DESCRIPTION)

The syntax allow both attribute/command execution and the usage of multiple typed arguments:

ACTION(alarm:command,mach/dummy/motor/move,int(1),int(10))
ACTION(reset:attribute,mach/dummy/motor/position,int(0))

Also commands added to the Class property @AllowedCommands@ can be executed:

ACTION(alarm:system:beep&)

PhoneBook (not implemented yet)

File where alarm receivers aliases are declared; e.g.

User:user@accelerator.es;SMS:+34666555666

Default location is: `` $HOME/var/alarm_phone_book.log ``

If User and Operator are defined in phonebook, AlarmsReceivers can be:

TAG2:User,Operator

REMINDER / RECOVERED / AUTORESET messages

Reminder

If a number of seconds is set, a reminder mail will be sent while the alarm is still active, if 0 no Reminder will be sent.

AlertOnRecovery

A message is sent if an alarm is active but the conditions of the attributes return to a safe value.
To enable the message the content of this property must contain ‘email’, ‘sms’ or both. If disabled no RECOVERY/AUTO-RESET messages are sent.

AutoReset

If a number of seconds is set, the alarm will reset if the conditions are no longer active after the given interval.

Snapshot properties

UseSnap

If false no snapshots will be trigered (unless specifically added to receivers using “SNAP”),

CreateNewContexts

It enables PyAlarm to create new contexts for alarms if no matching context exists in the database.

Alarm Configuration Properties

(In future releases these properties could be individually configurable for each alarm)

Enable : If False forces the device to Disabled state and avoids messaging.

LogFile : File where alarms are logged Default: “/tmp/alarm_$NAME.log”

FlagFile : File where a 1 or 0 value will be written depending if theres active alarms or not.n
This file can be used by other notification systems. Default: “/tmp/alarm_ds.nagios”

PollingPeriod : Periode in seconds. in which all attributes not event-driven will be polled. Default: 60000

MaxAlarmsPerDay : Max Number of Alarms to be sent each day to the same receiver. Default: 3

AlarmThreshold : Min number of consecutive Events/Pollings that must trigger an Alarm. Default: 3

FromAddress : Address that will appear as Sender in mail and SMS Default: “controls”

SMSConfig : Arguments for sendSMS command Default: “:”

MaxMessagesPerAlarm : To avoid the previous property to send a lot of messages continuously this property has been added to limit the maximum number of messages to be sent each time that an alarm is enabled/recovered/reset.

StartupDelay : Time that PyAlarm waits before starting the Alarm evaluation threads.

EvalTimeout : Timeout for read_attribute calls, in milliseconds .

UseProcess : To create new OS processes instead of threads.

Device Server Example

These will be the typical properties of a PyAlarm device

#---
SERVER PyAlarm/AssemblyArea, PyAlarm device declaration
#---
PyAlarm/AssemblyArea/DEVICE/PyAlarm: "LAB/VC/Alarms"
--- LAB/VC/Alarms properties
LAB/VC/Alarms->AlarmDescriptions: "OVENPRESSURE:The pressure in the Oven exceeds Range",\
 "ADIXENPRESSURE:The pressure in the Roughing Station exceeds Range",\
 "OVENTEMPERATURE:The Temperature of the Oven exceeds Range",\
 "DEBUG:Just for debugging purposes"
LAB/VC/Alarms->AlarmReceivers: OVENPRESSURE:somebody@cells.es,someone_else@cells.es,SMS:+34999666333,\
 ADIXENPRESSURE:somebody@cells.es,someone_else@cells.es,SMS:+34999666333,\
 OVENTEMPERATURE:somebody@cells.es,someone_else@cells.es,SMS:+34999666333,\
 DEBUG:somebody@cells.es
LAB/VC/Alarms->AlarmsList: "OVENPRESSURE:LAB/VC/BestecOven-1/Pressure_mbar > 5e-4",\
 "OVENRUNNING:LAB/VC/BestecOven-1/MaxValue > 70",\
 "ADIXENPRESSURE:LAB/VC/Adixen-01/P1 > 1e-4 and OVENRUNNING",\
 "OVENTEMPERATURE:LAB/VC/BestecOven-1/MaxValue > 220",\
 "DEBUG:OVENRUNNING and not PCISDOWN"
LAB/VC/Alarms->PollingPeriod: 30
LAB/VC/Alarms->SMSConfig: ...

Mail Messages

PyAlarm allows to send mail notifications. Each alarm may be configured with AlarmReceivers property to provide
notification list. There is also a GobalReceivers property which allows to define notification for all alarms.

PyAlarm supports two ways of sending mails configured with the MailMethod class property:

	using mail shell command, when MailMethod is set to mail, which is default,

	or using smtplib python library when MailMethod is set to smtp[:host[:port]].

When using mail method it setup from variable as ‘-S’ option (see: https://linux.die.net/man/1/mail).
However, some setups may require to use -r option additionally. To enable it set MailDashRoption class property
with a proper mail address.

As it is now, mail messages are formatted as the following:

Format of Alarm message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
 LAB/VC/BestecOven-1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

Alarm receivers are:
 somebody@cells.es
 someone_else@cells.es
Other Active Alarms are:
 DEBUG:Fri Nov 7 18:37:35 2008:OVENRUNNING and not PCISDOWN
 OVENRUNNING:Fri Nov 7 18:37:17 2008:LAB/VC/BestecOven-1/MaxValue > 70
Past Alarms were:
 OVENTEMPERATURE:Fri Nov 7 20:49:46 2008

Format of Recovered message

Subject: LAB/VC/Alarms: Alarm RECOVERED (OVENTEMPERATURE)
Date: Wed, 12 Nov 2008 11:52:39 +0100

TAG: OVENTEMPERATURE
 LAB/VC/BestecOven-1/MaxValue > 220 was RECOVERED at Wed Nov 12 11:52:39 2008

Alarm receivers are:
 somebody@cells.es
 someone_else@cells.es
Other Active Alarms are:
 DEBUG:Fri Nov 7 18:37:35 2008:OVENRUNNING and not PCISDOWN
 OVENRUNNING:Fri Nov 7 18:37:17 2008:LAB/VC/BestecOven-1/MaxValue > 70
Past Alarms were:
 OVENTEMPERATURE:Fri Nov 7 20:49:46 2008

PANIC Recipes

	Alarms Distribution
	About distributing load (answer to paul bell, 2014)

	Alarm Formulas Examples
	Sending a Test Message at Startup

	Testing a device availability

	Getting Tango state/attribute/value/quality/time/delta in formulas

	Creating a periodic self-reset alarm

	Enabling search, expression matching and list comprehensions

	Some list comprehension examples

	Grouping Alarms in Formulas

	Alarm on delta and value

	Generating Clock Signals

	AlarmStates
	State transitions

	Disabled States

	IEC 62682: AlarmStates Definition and related Actions

	Hierarchies In Alarms
	TOP/BOTTOM

	Alarm GROUP

	Special Alarm Recipes
	Special keys used in Alarm formulas

	Expiration Date

	Accessing PyAlarm Values CACHE

	Clock: Alarm triggered by time

	Exception Management

	Grouping Alarms

	How PyAlarm Device Server Works
	The AlarmAPI

	The updateAlarms thread

	The TangoEval engine

	PANIC Setup
	Description

	Launch your PANIC System in few steps

	Exception Management in Panic Alarms

	Using the PANIC python API
	The Panic Module

	Browsing existing alarms

	Adding / Removing alarms

	Modifying alarms

	Modifying a receiver in all alarms

	PanicAdminUsers property

	PyAlarm Startup Modes

	PyAlarm timing configuration

	Testing your PyAlarm installation

	PANIC Receivers, Logging and Actions
	Alarm Receivers

	SMS / Mail Config

	Global Receivers

	Logging

	Triggering Actions from PyAlarm

	PyAlarm Using Events With Taurus
	Setting up a PyAlarm getting Tango events from Taurus

	Is this approach really Event-Based?

Alarms Distribution

About distributing load (answer to paul bell, 2014)

We have 1200+ alarms and system works quite well with it. But regarding distribution of PyAlarm devices and servers the rules must be more intelligent.

Instead of thinking in terms of N attrs/pyalarm you must distribute load trying to group all attributes from the same host or subsystem.

There are two reasons to do that (and also apply to Archiving):

	When a host is down you’ll have a lot of proxy threads in background trying to reconnect to lost devices. If alarms are distributed on rough numbers it becomes a lot of timeouts spreading through the system. When alarms are grouped by host you isolate the problems.

	Same applies for very event-intensive devices. Devices that generate a lot of information will need lower attrs/pyalarm ratio than devices that do not change so much.

Apart of that … if you have 1000 alarms just for the linac then you may have a wrong specification. I use to say than “all” should be in the order of 10K ; by experience any number about that is too much. If you need more than 10K of a kind what you really need is to add a level of abstraction (do not check all gauges of a vacuum section, just had an attribute where you can read the max value).

It applies to all Tango systems I’ve seen (alarms, archiving, save/restore, pool, device tree, …); if you reach a number above 10K then you must add an abstraction layer. It’s not only that you reach a performance limit, also your users will feel too dazed and confused when searching for things.

e.g. Our accelerator group requested 1200 alarms … and after some months they asked for a filter to show only the 240 they really care about.

Alarm Formulas Examples

Contents

	Alarm Formulas Examples

	Sending a Test Message at Startup

	Testing a device availability

	Getting Tango state/attribute/value/quality/time/delta in formulas

	Creating a periodic self-reset alarm

	Enabling search, expression matching and list comprehensions

	Some list comprehension examples

	Grouping Alarms in Formulas

	Alarm on delta and value

	Generating Clock Signals

Alarms are parsed and evaluated using fandango.TangoEval class.

Sending a Test Message at Startup

This alarm formula is just “True” ; therefore will be enabled immediately sendin an email message to test@tester.com

AlarmList -> DEBUG:True
AlarmDescriptions -> DEBUG:The PyAlarm Device $NAME has been restarted
AlarmReceivers -> DEBUG: test@tester.com

Testing a device availability

It is done if you put directly the name of the device or its State as a condition by itself. In the second case and alarm will be triggered either if the Pressure is above threshold or the device is not reachable.

PRESSURE:SR/VC/VGCT/Pressure > 1e-4
STATE_AND_PRESSURE:?SR/VC/VGCT and SR/VC/VGCT/Pressure > 1e-4

Getting Tango state/attribute/value/quality/time/delta in formulas

The Alarm syntax allows to add the following clauses to the attribute name (value returned by default):

some/device/name{/attribute}{.value/all/time/quality/delta/exception}

attribute: if no attribute name is given, then device state is read.

PLC_Alarm: BL22/CT/EPS-PLC-01 == FAULT

value: default, returns the value of the attribute

Pressure_Alarm: BL22/CT/EPS-PLC-01/CC1_AF.value > 1e-5

time: returns the epoch in seconds of the last value read

Not_Updated: BL22/CT/EPS-PLC-01/CPU_Status.time < (now-60)

quality : returns the tango quality value (ATTR_VALID, ATTR_INVALID, ATTR_WARNING, ATTR_ALARM).

Temperature_Alarm: BL22/CT/EPS-PLC-01/OP_WBAT_OH01_01_TC11.quality == ATTR_ALARM

delta : returns the variation of the value in the last N=AlarmThreshold reads (stored in TangoEval.cache array of size AlarmThreshold+1)

Valve_Just_Closed: BL22/CT/EPS-PLC-01/VALVE_11.delta == -1

exception : True if the attribute is unreadable, False otherwise

Not_Found: BL22/CT/EPS-PLC-01/I_Dont_Exist.exception

all : returns the raw attribute object as returned by PyTango.DeviceProxy.read_attribute method.

Creating a periodic self-reset alarm

A simple clock alarm would use the current time and will set AlarmThreshold, PollingPeriod and AutoReset properties. See this example:

https://github.com/tango-controls/PANIC/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

A single formula clock would be more hackish; this alarm will execute a command on its own formula

PERIODIC:(FrontEnds/VC/Elotech-01/Temperature and FrontEnds/VC/VGCT-01/P1 \
and (1920<(now%3600)<3200)) or (ResetAlarm('PERIODIC') and False)

Enabling search, expression matching and list comprehensions

Having the syntax dom/fam/mem/attr.quality whould allow us to call attrs like:

any([ATTR_ALARM==s+'.quality' for s in FIND('dom/fam/*/pressure')])

One way may be using QUALITY, VALUE, TIME key functions:

any([ATTR_ALARM==QUALITY(s) for s in FIND('dom/fam/*/pressure')])

The use of FIND allows PyAlarm to prepare a list Taurus models that can be redirected from an <pre>event_received(…)</pre> hook.

Some list comprehension examples

any([s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

equals to

any(FIND(SR/ID/SCW01/Cooler*Err*))

The negate:

any([s==0 for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

any(not s for s in FIND(SR/ID/SCW01/Cooler*Err*)])

is equivalent to

not all(FIND(SR/ID/SCW01/Cooler*Err*))

is equivalent to

[s for s in FIND(SR/ID/SCW01/Cooler*Err*) if not s]

Grouping Alarms in Formulas

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any((ALARM_1 , ALARM_2))

or:

ALARM_ANY: any(FIND(my/alarm/device/ALARM_*))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

Alarm on delta and value

This alarm will be triggered whenever a channel (HV*Code attributes) changes its value (delta!=0) and the new value is OFF (value=0)

any([(changed and value==0) for changed,value in

zip(FIND(bl*/vc/ipct*/hv*code.delta) ,

FIND(bl*/vc/ipct*/hv*code.value))])

Generating Clock Signals

Playing with PollingPeriod, AlarmThreshold and AutoReset properties is possible to
achieve an square signal that keeps the alarm active/inactive at regular intervals.

CLOCK=NOT CLOCK

The AlarmThreshold applies to both activation and reset of the alarm, so it has to be
added to the AutoReset period to regulate the duty cycle. Keeping the PollingPeriod and
AutoReset values very small will generate an accurate frequency (do not expect high accuracy,
that’s a trick for testing but not a proper signal generator).

My values for a 10 seconds alarm cycle are:

.. code-block:: python

PollingPeriod = 0.1
AlarmThreshold = 50
AutoReset = 0.0001

If you want a more accurate alarm, you can also use the NOW() function. This example generates a
switch every second

CLOCK = NOW()%2<1
PollingPeriod=1
AlarmThreshold-1

AlarmStates

Contents

	AlarmStates

	State transitions

	Disabled States

	IEC 62682: AlarmStates Definition and related Actions

State transitions

Alarm States and Severities are defined in panic.properties module.

With PyAlarm > 6.1; GUI will read the current Alarm state from the AlarmList attribute.

For compatibility with older versions, the events of ActiveAlarms will be used instead:

	If ActiveAlarms doesn’t cotain tag, alarm.active will be 0, state = NORM

	Activealarms contains tag, alarm.active = activealarms timestamp, state = ACTIVE

	ActiveAlarms is None or Exception, alarm.active will be set to -1. state = ERROR

Disabled States

Their meanings are:

	OOSRV = Device server is Off (not exported), no process running

	DSUPR = Enabled property is False

	SHLVD = Alarm is listed in DisabledAlarms attribute (temporary disabled)

	ERROR = Device is alive but the alarm is not being evaluated (exported=1 and thread dead or exception).

IEC 62682: AlarmStates Definition and related Actions

Different annunciators can be setup for each State change

Reset() can be automatic or forced to be manual

Reminder() : Alarm still ACTIVE, additional action can be configured

RTNUN : Condition recovered (but not Reset)
Alarm ACTIVE : (UNACKED)
Alarm ACKED : (action taken by operator)
RTNUN: return to NORM
NORM: after Reset() or not triggered

First peaks ignored if (t < polling*AlarmThreshold)

SHLVD, DSUPR, OOSRV: Unactive states.

SHELVED for temporary disabling,

DSUPR by process condition,

OOSRV is permanent (device disabled).

All of them are controlled by the Enable/Disable states/commands of PyAlarm.

In addition, PANIC adds ERROR State to raise problems with Tango devices.

Hierarchies In Alarms

Contents

	Hierarchies In Alarms

	TOP/BOTTOM

	Alarm GROUP

	Future Releases

TOP/BOTTOM

The TOP/BOTTOM just provides a filter for finding alarms where the value of another
alarm is used directly in the formula. It is case sensitive, so you can use lower/upper
case to show/hide alarms in these filters.

To use hierarchies, alarms shall be written using the result of previous ones:

GAB1 = any([t >5 for t in FIND(tc1:10000/LMC/C01/GAB/*)])
GAB2 = any([t >5 for t in FIND(tc1:10000/LMC/C02/GAB/*)])
GAB_ALL= GAB1 or GAB2
OTHER = tc1:10000/LMC/C02/Other/State != ON
CAPITAL = GAB_ALL or OTHER

Then, the filter by hierarchy will return:

TOP (alarms that depend on others): CAPITAL, GAB12
BOTTOM (alarms isolated or referenced from others): OTHER, GAB_ALL, GAB1, GAB2

In this case GAB_ALL appears in both lists; to avoid that just rewrite it using lower case attribute names:

GAB_ALL = any(FIND('lmc1:10000/lmc/alarms/01/gab*'))

Now you should have only “CAPITAL” as TOP Alarm.

You can reproduce this behaviour from the api calling:

panic.AlarmAPI().filter_hierarchy('TOP')

Alarm GROUP

For an expression matching multiple alarms or attributes, GROUP returns a new formula that will evaluate to True
if any of the alarm changes to active state (.delta) or matches a given condition:

GROUP(ALARM1, ALARM2, ALARM3)

Thus, GROUP will be activated when any of the three alarms switches to active; and immediately reset to wait for the next change. In this way you get a notification for any new activation of the three alarms.

NOTE: BY DEFAULT IS NOT LIKE any(FIND(*)); it will react only on change, not taking in account previous states!

NOTE2: you must tune your PyAlarm properties to have AlarmThreshold = 1 and AutoReset <= 3 to take profit of this feature.

NOTE3: The GROUP activation will be just a peak when using .delta (default); take this in account when setting up several levels of alarms as fast peaks may not be noticed if higher level alarms have long thresholds.

It uses the read_attribute schema from TangoEval, thus using .delta to keep track of which values has changed.
For example, GROUP(test/alarms/*/TEST_[ABC]) will be replaced by:

any([t.delta>0 for d in FIND(test/alarms/*/TEST_[ABC].all)])

But, as regular expressions may trigger unexpected results, the syntax with explicit ALARM names is prefered.

The GROUP macro can be called with one or several expressions separated by commas and a condition separated by semicolon:

GROUP(expression1[,expression2;condition)

Expressions may contain a device name or not. If no device name is passed then it will search for it in the alarm list:

expression=[a/dev/name*/]attribute*

Thus, a valid GROUP expression is:

GROUP(LOCAL_ALARM1,t01:10000/an/alarm/dev/ALARM2)

Or

GROUP(LOCAL_ALARM1,t01:10000/an/alarm/dev/ALARM2;x>=1)

In the first case you’ll get a peak when any of them changes from 0 to 1; in the second case you’ll get if any of them is already on 1 (so a change in the second alarm will not trigger a second peak).

Future Releases

In future releases the GROUP macro will be capable of evaluating any tango attribute and not only alarms. As of 6.0 this feature is not yet supported

If the condition is empty then PyAlarm checks any .delta != 0. It can be modified if the formula contains a semicolon “;” and
a condition using ‘x’ as variable; in this case it will be used instead of delta to check for alarm:

GROUP(bl09/vc/vgct-*/p[12];x>1e-5) => [x>1e-5 for x in FIND(bl09/vc/vgct-*/p[12])]

Special Alarm Recipes

Special keys used in Alarm formulas

	DEVICE: PyAlarm device name

	DOMAIN,FAMILY,MEMBER: Parts of the device name

	ALARMS: Alarms managed by this device

	PANIC: API containing all declared alarms

	t: time since the device was started

	T(…): string to time

	str2time(…): string to time

	now, NOW(): current timestamp

	DEVICES: instantiated devices

	DEV(device): DeviceProxy(device)

	NAMES(expression’): Finds all attributes matching the expression and return its names.

	CACHE: Saved values

	PREV: Previous values

	READ(attr): TangoEval.read_attribute(attr)

	FIND(‘expression’): Finds all attributes matching the expression and return its values.

Expiration Date

Disabling or re-enabling after a given date

A temporal condition can be achieved using the T() macro in the formula.

To disable an Alarm after a given date:

T() < T('2013-04-23') and D/F/M.A > V1

To re-enable it after a maintenance period:

T() > T('2013-04-23') and D/F/M.A > V1

Accessing PyAlarm Values CACHE

The PyAlarm CACHE dictionary contains the last values stored for each tango attribute that
appeared in the formulas. The size of cache is AlarmTrheshold + 1

Usage:

PASS_BY_0=[(k,v.time.tv_sec,str(v.value)) for k,t in CACHE.items() for v in t if v.value==0]

This will trigger alarm if ALL values in the cache are equal, it is NOT the same as Delta
because it checks only the first and last values:

not (lambda l:max(l)-min(l))([v.value for v in CACHE['wr/rf/circ-1/heartbeat']])

Clock: Alarm triggered by time

This alarm will be enabled/disabled every 5 seconds.

First, create a new PyAlarm device:

import fandango as fn
fn.tango.add_new_device('PyAlarm/Clock','PyAlarm','test/pyalarm/clock')

Add the new alarm (formula will use current time to switch True/False very 5 seconds)

from panic import AlarmAPI
alarms = AlarmAPI()
alarms.add(device='test/pyalarm/clock',tag='CLOCK',formula='NOW()%10<5')

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor('test/pyalarm/clock').start_servers(host='your_hostname')

Then, configure the device properties to react every second for both activation and reset:

dtest = alarms.devices['test/pyalarm/clock']
dtest.get_config()
dtest.config['Enabled'] = 1
dtest.config['AutoReset'] = 1
dtest.config['AlarmThreshold'] = 1
dtest.config['PollingPeriod'] = 1
alarms.put_db_properties(dtest.name,dtest.config)
dtest.init()

This is the result you can expect when plotting test/pyalarm/clock/CLOCK in a taurustrend:

[image: alternate text]

Exception Management

Alarm properties that control if exceptions trigger alarms or not …

	‘RethrowState’:

	[PyTango.DevBoolean,
“Whether exceptions in State reading will be rethrown.”,
[True]],#Overriden by panic.DefaultPyAlarmProperties

	‘RethrowAttribute’:

	[PyTango.DevBoolean,
“Whether exceptions in Attribute reading will be rethrown.”,
[False]],#Overriden by panic.DefaultPyAlarmProperties

	‘IgnoreExceptions’:

	[PyTango.DevBoolean,
“If True unreadable values will be replaced by None instead of Exception.”,
[True]],#Overriden by panic.DefaultPyAlarmProperties

Grouping Alarms

The proper way is (for readability I use upper case letters for alarms):

ALARM_1: just/my/tango/attribute_1
ALARM_2: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

or:

ALARM_1_OR_2: any((ALARM_1 , ALARM_2))

or:

ALARM_ANY: any(FIND(my/alarm/device/ALARM_*))

Any alarm you declare becomes both a PyAlarm attribute and a variable that you can anywhere (also in other PyAlarm devices). You don’t trigger any new read because you just use the result of the formula already evaluated.

The GROUP is used to tell you that a set of conditions has changed from its previous state. GROUP instead will be triggered not if any is True, but if any of them toggles to True. It forces you to put the whole path to the alarm:

GROUP(my/alarm/device/ALARM_[12])

How PyAlarm Device Server Works

This document tries to summarize how PyAlarm processes alarms and executes its actions.
A full explanation of alarm syntax and each property is available in the PyAlarm user guide,
but here I provide a summary for convenience.

The device server behaviour relies on three python objects: AlarmAPI, updateAlarms thread and TangoEval.

Each alarm is independent in terms of formula and receivers; but all alarms within the same PyAlarm device
will share a common evaluation environment determined by PyAlarm properties.

Contents

	How PyAlarm Device Server Works

	The AlarmAPI

	The updateAlarms thread

	AlertOnRecovery and AlarmReset

	The TangoEval engine

The AlarmAPI

This object encapsulates the access to the alarm configurations database.
Tango Database is used by default, all alarm configurations are stored as device properties
of each declared PyAlarm device (AlarmList, AlarmReceivers, AlarmSeverities).

The api object allows to load alarms, reconfigure them and transparently move Alarms between PyAlarm devices.

The updateAlarms thread

This thread will be executed periodically at a rate specified by the PollingPeriod.
All Enabled alarms will be evaluated at each cycle; and if evaluated to a True value (understood as any value not in (0,”“,None,False,[],{})).

Once an Alarm has been active by a number of cycles equal to the device AlarmThreshold it will become Active.
Then the PyAlarm will process all elements of the AlarmReceivers list.

AlertOnRecovery and AlarmReset

Whenever an alarm formula becomes True; a counter starts to increase until it reaches the AlarmThreshold value, becoming an active alarm.

This counter is kept at AlarmThreshold value and starts decreasing once the formula is no longer True. If the counter reaches 0 (its minimum value) the alarm will be still active but its new state will be RECOVERED, an email will be sent to receivers if AlertOnRecovery property is True.

Then, if the AlarmReset value (in seconds) is distinct from 0, a time count starts from the point of RECOVERY. If there’s no change in the alarm state during this time count, the alarm will be automatically RESET (notifying receivers or not depending on configuration).

So, if you need an alarm to have a fast recovery keep in mind that you’ll have to apply a delay equal to AlarmThreshold+PollingPeriod to the value that you have set as AutoReset.

The TangoEval engine

This engine will automatically replace each Tango attribute name in the formula by its value.
It will also provide several methods for searching attribute names in the tango database.

Amongst other features, all values are kept in a cache with a depth equal to the AlarmThreshold+1.
This cache allows to create alarms using .delta or inspecting the cache for specific behaviors.

PANIC Setup

by Sergi Rubio — 2006, 2016

Contents

	PANIC Setup

	Description

	Launch your PANIC System in few steps

	Dependencies

	Get the code

	Setup your Tango database

	Run the panic application and configure your Alarms

	FestivalDS, Speech and pop-ups

Description

The Package for Alarms and Notification of Incidents from Controls

PANIC Alarm System is a set of tools (api, Tango device server, user interface) that provides:

	Periodic evaluation of a set of conditions.

	Notification (email, sms, pop-up, speakers)

	Keep a log of what happened. (files, Tango Snapshots)

	Taking automated actions (Tango commands / attributes)

	Tools for configuration/visualization.

Other Documentation in this same repository

	PANIC presentation at PCAPAC‘14: Panic Talk at PCAPAC‘14

	The Panic python API: PanicAPI.rst

	The PyAlarm User Guide: PyAlarmUserGuide.rst

	The Panic UI manual: panicdoc.html

Launch your PANIC System in few steps

Dependencies

You must have PyTango + Tango + MySQL up and running and your TANGO_HOST and PYTHONPATH environment variables properly set.

PyTango is available at PyPI: https://pypi.python.org/pypi/PyTango

Get the code

ALL OF THIS IS DEPRECATED; GET THE PACKAGES FROM https://github.com/tango-controls INSTEAD

Fandango library (functional tools for tango) is required to be in your PYTHONPATH:

svn co https://tango-cs.svn.sourceforge.net/svnroot/tango-cs/share/fandango/trunk/fandango fandango

You can download PyAlarm and the panic api from tango-ds at sourceforge:

svn co https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/SoftwareSystem/PyAlarm/trunk

The PANIC User Interface is available in the /clients branch:

svn co https://svn.code.sf.net/p/tango-ds/code/Clients/python/Panic/trunk

Setup your Tango database

Create your devices from a python console (or Jive):

import PyTango
db = PyTango.Database()

def add_new_device(server,klass,device):
dev_info = PyTango.DbDevInfo()
dev_info.name = device
dev_info.klass = klass
dev_info.server = server
get_database().add_device(dev_info)

#Create a PyAlarm device
add_new_device('PyAlarm/1','PyAlarm','test/alarms/1')

#I'll add a simulator, but you can't use TangoTest or whatever device you want:
add_new_device('PySignalSimulator/1','PySignalSimulator','test/sim/1')
db.put_device_property('test/sim/1',{'DynamicAttributes':['A=t%100']})

From shell, launch your PyAlarm and Simulator devices:

python PyAlarm/PyAlarm.py 1 &
python PySignalSimulator/PySignalSimulator.py 1 &

Create a TEST_ALARM using the API:

import panic
alarms = panic.api()
alarms.add('TEST_ALARM',formula='(test/sim/1/A%15 > 5)',description='test',receivers='your@mail')

Run the panic application and configure your Alarms

python Panic/gui.py

See the application manual: http://plone.tango-controls.org/tools/panic/panic-ui/

If you want to see faster changes in the alarm cycle try to set the following configuration values (Tools->Adv.Config):

PollingPeriod = 1
AlarmThreshold = 1
AutoReset = 5
Notification Services

The syntax for sending an email (from linux, you’ll need the “mail” command available in the system, from windows you’ll have to set as receiver a command from a device running in a linux machine):

DeviceProxy("your/alarm/device").command_inout("SendMail",["Bonjour,\n\nthis is a test message\n\nau revoire","RE: testing","your-name@tango-controls.org"])

The other command we have for notification is SendSMS; but it requires our smslib.py file that is specific to our SMS provider (it uses http transactions to send the messages). If you’re interested on it you’ll have to write your own smslib.py file to use it.

FestivalDS, Speech and pop-ups

There’s another notification device you can use, the FestivalDS. It provides speech synthesizing and pop-ups in a linux environment (it requires “festival” and “libnotify-bin” linux packages):

https://svn.code.sf.net/p/tango-ds/code/DeviceClasses/InputOutput/FestivalDS/trunk

The commands are:

Play(string): speech to speakers
Beep(): beep!
Play_sequence(string): it just makes some beeps before and after the speech
PopUp(title,text,[seconds]): shows a pop-up with title/text for the given time

And that’s all regarding our current notifiers, for database we don’t have anything yet, as we use the device properties to store all the data. You’ll find more information in the PyAlarm user guide.

Exception Management in Panic Alarms

The exception management will be done using the _raise=RAISE argument of the TangoEval.eval method.

Three properties control if exceptions will enable the alarm or will be simply ignored.

	IgnoreExceptions

	if False then all exceptions will be registered as FailedAlarms and the PyAlarm will change to FAULT whenever an exception is encountered. If no rethrow option is active, FailedAlarms will be displayed in grey in AlarmGUI as “disabled”.

	RethrowAttribute

	if True, any exception in the formula will set the alarm as active. PyAlarm state will change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

	RethrowState

	if True, only alarms reading State attributes will be activated by exception. PyAlarm state will change to ALARM or FAULT if IgnoreExceptions is False and all alarms are in failed state.

So, in case of having an alarm reading a faulty attribute, the status of the alarm will be:

	DISABLED

	If IgnoreExceptions=False and RethrowAttribute=False

	NOT ACTIVE

	If IgnoreExceptions=True and RethrowAttribute=False

	ACTIVE

	If IgnoreExceptions=False and RethrowAttribute=True

	ACTIVE

	If IgnoreExceptions=True and RethrowAttribute=True

Using the PANIC python API

Contents

	Using the PANIC python API

	The Panic Module

	Browsing existing alarms

	Adding / Removing alarms

	Modifying alarms

	Modifying a receiver in all alarms

The Panic Module

Panic contains the python AlarmAPI for managing the PyAlarm device servers from a client application or a python shell. The panic module is part of the Panic bliss package.:

import panic
alarms = panic.api()

Browsing existing alarms

The AlarmAPI is a dictionary-like object containing Alarm objects for each registered Alarm tag. In addition the AlarmAPI.get method allows caseless search by tag, device, attribute or receiver:

alarms.get(self, tag='', device='', attribute='', receiver='')

alarms.get(device='boreas')
Out[232]:
 [Alarm(BL29-BOREAS_STOP:The BakeOut controller has been stop),
 Alarm(BL29-BOREAS_PRESSURE_1:),
 Alarm(BL29-BOREAS_PRESSURE_2:),
 Alarm(BL29-BOREAS_START: BL29-BOREAS bakeout started
 ...]

alarms.get(receiver='eshraq')
Out[234]:
 [Alarm(RF_LOST_EUROTHERM:),
 Alarm(OVEN_COMMS_FAILED:Oven temperatures not updated in the last 5 minutes),
 Alarm(RF_PRESSURE:The pressure in the cavity exceeds Range),
 Alarm(OVEN_TEMPERATURE:The Temperature of the Oven exceeds Range),
 Alarm(RF_EUROTHERM:),
 Alarm(RF_LOST_MKS:),
 Alarm(RF_TEMPERATURE_MAX2:),
 ...]

alarms['RF_LOST_MKS'].receivers
Out[237]: '%SRUBIO,%ESHRAQ,%VACUUM,%LOTHAR,%JNAVARRO'

Adding / Removing alarms

The add/remove methods take care of properties modification:

alarms.add('RF_ON_FIRE','rf/ct/alarms',formula='rf/ct/plc-01/temperature>1000.',message='FIRE!',receivers='rf@cells.es,plc@cells.es')

alarms.remove('RF_ON_FIRE')

Modifying alarms

Each Alarm object contains strings with its configuration, if you modify it you must call Alarm.write() method to update the alarm device. An Alarm.rename() method is also available.

In [235]: alarms[‘RF_LOST_MKS’].device
Out[235]: ‘sr/rf/alarms’

In [236]: alarms[‘RF_LOST_MKS’].formula
Out[236]: ‘SR/RF/VGCT-01/State==UNKNOWN or SR/RF/VGCT-02/State==UNKNOWN’

In [237]: alarms[‘RF_LOST_MKS’].receivers
Out[237]: ‘%SRUBIO,%ESHRAQ,%VACUUM,%LOTHAR,%JNAVARRO’

In [238]: alarms[‘RF_LOST_MKS’].write()

Modifying a receiver in all alarms

And a fast way for updating alarm receivers:

[a.replace_receiver('%DFERNANDEZ','%SRUBIO') for a in alarms.get(receiver='fernandez')]

PanicAdminUsers property

Contents

	PanicAdminUsers property

The PanicAdminUsers property will contain all users enabled to modify an alarm.

Although, any user identified as an email receiver of an alarm will be allowed to change it.

The propery is check from the get_admins_for_alarm() method in AlarmAPI.

The method will be used to call the setAllowedUsers() of a validator plugin.

The methods that the i*ValidatedWidget decorator requires of a validator are:

	setLogging()

	setAllowedUsers()

	setLogMessage()

	exec_()

User validation in the GUI will be kept for consecutive actions as long as the allowed users list for each action doesn’t change. If a new action is required on an Alarm with different receivers, the login will be asked again.

The login will be kept for a time defined by PyAlarm.PanicUserTimeout property. This time is 60 seconds by default.

PyAlarm Startup Modes

The PyAlarm Startup is controlled by StartupDelay and Enabled properties.

StartupDelay will put the PyAlarm in PAUSED state after a restart;
to not start to evaluate formulas immediately but after some seconds,
thus giving time to other devices to start.

The Enabled property will instead control the notification actions:

	If False, no notification will be triggered.

	If True, all notifications can be sent once StartupDelay has passed.

	If a Number is given, all notifications triggered between startup and t+Enabled will be ignored.

	Enabled>(AlarmThreshold*PollingPeriod): “Silent restart”, activates the Alarms that were presumably active before a restart; but do not retriggers the notifications.

Enabled = 120 is the typical case; not triggering notifications until the device has been running for at least 3 minutes.

If Enabled = False or while t < Start+Enabled the PyAlarm State will be DISABLED.

PyAlarm timing configuration

	StartupDelay: the device will wait before starting to evaluate the alarms (e.g. giving some time to the system to recover from a powercut).

	Enabled: if False or 0 the PyAlarm it equals to disabling all alarm actions of the device; if it is True the behavior will be the normal expected; if it has a numeric value (e.g. 120) it means that the device will evaluate the alarms but not execute actions during the first 120 seconds (thus alarms can be activated but no action executed). It is used to prevent a restart of the device to re-execute all alarms that were already active.

	EvalTimeout: The proxy timeout used when evaluating the attributes (any read attribute slower than timeout will raise exception).

	AlarmThreshold: number of cycles that an alarm must evaluate to True to be considered active (to avoid alarms on “glitches”).

	RethrowAttribute/RethrowState: Whether exceptions on reading attributes or states should be rethrown to higher levels, thus causing the alarm to be triggered. By default alarms are enabled if an State attribute is not readable (RethrowState=True), but when a numeric attribute is not readable its value is just replaced by None (RethowAttribute=False) and the formula evaluated normally.

	Reminder: A new email will be sent every XX seconds if the alarm remains active. When AlertOnRecovery is True an email will be sent also every time when the formula result oscillates from True to False.

	UseProcess: This is an experimental feature, like UseTaurus and others. In general, I advice you to not modify any parameter that is not detailed in the PyAlarm user guide as you may obtain unexpected results. Some parameters are used to test new features still under development and their behavior may vary between commits.

Regarding actions on recovery … this option is planned but not yet fully available. Actually just emails are sent when AlertOnRecovery is True. This feature may be implemented in the next 6 months or so but the syntax is still to be decided.

Testing your PyAlarm installation

This script will check the current performance of your PyAlarm devices:

> TANGO_HOST=your_hostname:10000 python panic/extra/report.py check

PANIC Receivers, Logging and Actions

Contents

	PANIC Receivers, Logging and Actions

	Alarm Receivers

	SMS / Mail Config

	Global Receivers

	Logging

	Local LogFile

	Remote LogFile

	Using SNAP database

	Triggering Actions from PyAlarm

Alarm Receivers

Allowed receivers are email, sms, action and shell commands.

SMS / Mail Config

These CLASS properties will control how SMS and Mail is configured:

SMSConfig

SMSMaxLength

SMSMaxPerDay

FromAddress

MailMethod

Global Receivers

The PyAlarm class property “GlobalReceivers” allows to set receivers that
will be applied to all Alarms; independently of the device that is managing them.

The syntax is:

GlobalReceivers
 {regexp}:{receivers}
 .*:oncall@facility.dom

Logging

Alarm logging can be managed in three ways: local logs, remote logs via FolderDS or Snapshoting.

All the logging methods support defined variables ($ALARM, $DATE, $DEVICE, $MESSAGE, $VALUES, $…)

Local LogFile

Simply set the LogFile property to your preferred local file path:

LogFile = /tmp/pyalarm/$NAME_$DATE_$MESSAGE.log

Remote LogFile

You can use the fandango.FolderDS device to specify a remote logfile destination on the LogFile property:

LogFile = tango://[folderds/device/name]/[logfile_name]
LogFile = tango://sys/folder/panic-logs/$NAME_$DATE_$MESSAGE.log

You can have both local and remote logging by setting LogFile to a local file and adding an ACTION receiver:

LogFile = /tmp/pyalarm/$NAME_$DATE_$MESSAGE.log

AlarmReceivers = ACTION(alarm:command,controls02:10000/test/folder/tmp-folderds/SaveText,
 '$NAME_$DATE_$MESSAGE.txt','$REPORT')

FolderDS documentation: https://github.com/tango-controls/fandango/blob/documentation/doc/devices/FolderDS.rst

Using SNAP database

This database logging will save the alarm state and all associated attributes every time that the alarm is activated/reset.

You should have configured previously an Snapshoting Database (java/mysql service by Soleil).

Then you have to:

	Set the CreateNewContexts property of PyAlarm to True (it will automatically create a new context on alarm triggering)

	Or create manually a new context in the database using Bensikin.

	Set UseSnap=True to trigger snapshots for all alarms

	Or simply add the SNAP receiver.

Creating a context manually instead of doing it with PyAlarm may allow you to store Tango attributes that do not appear in the formula, thus enabling a sort of alarm-triggered archiving mode.

Triggering Actions from PyAlarm

See basic details on the user guide:

https://github.com/tango-controls/PANIC/blob/documentation/doc/PyAlarmUserGuide.rst#id20

Here you have some more examples:

Send an email (equivalent to just %MAIL:address@mail.com)
%SENDMAIL:ACTION(alarm:command,lab/ct/alarms/SendMail,$DESCRIPTION,$ALARM,address@mail.com)

Reset another alarm, DONT USE [] TO CONTAIN ARGUMENTS!
%RESET:ACTION(alarm:command,test/pyalarm/logfile/resetalarm,'TEST','$NAME_$DATE_$DESCRIPTION')

Reload another device
%INITLOG:ACTION(alarm:command,test/pyalarm/logfile/init)

Write a tango attribute
%WRITE:ACTION(alarm:attribute,sys/tg_test/1/string_scalar,'$NAME_$DATE_$VALUES')

Execute a command in another tango host
in this example a FolderDS saves the alarm log
%LOG:ACTION(alarm:command,controls02:10000/test/folder/tmp-folderds/SaveText,'$NAME_$DATE_$MESSAGE.txt','$REPORT')

Then declare the AlarmReceivers like:

ACTION(alarm:command,mach/dummy/motor/move,int(1),int(10))
ACTION(reset:attribute,mach/dummy/motor/position,int(0))

The first field is one of each PyAlarm.MESSAGE_TYPES:

ALARM
ACKNOWLEDGED
RECOVERED
REMINDER
AUTORESET
RESET
DISABLED

Available keywords (managed by PyAlarm.parse_devices()) in ACTION are:

$TAG / $NAME / $ALARM
$DEVICE
$DATE / $DATETIME
$MESSAGE
$VALUES
$REPORT
$DESCRIPTION

PyAlarm Using Events With Taurus

Setting up a PyAlarm getting Tango events from Taurus

We will test events using the CLOCK alarm created in the previous recipe (polling should be enabled, this example uses polling on CLOCK attribute at 10 ms):

https://github.com/tango-controls/panic/blob/documentation/doc/recipes/CustomAlarms.rst#clock-alarm-triggered-by-time

Then, create a new PyAlarm device and the event-based alarm:

import fandango as fn
fn.tango.add_new_device('PyAlarm/events','PyAlarm','test/pyalarm/events')

from panic import AlarmAPI
alarms = AlarmAPI()
alarms.add(device='test/pyalarm/events',tag='EVENTS',formula='test/pyalarm/clock/clock')

Start your device server using Astor, fandango or manually

import fandango as fn
fn.Astor('test/pyalarm/events').start_servers(host='your_hostname')

Then, configure the device properties to read attributes using Taurus and react as fast as possible
Taurus will take care of subscribing to events and update cached values.

dtest = alarms.devices['test/pyalarm/events']
dtest.config['UseTaurus'] = True
dtest.config['AutoReset'] = 0.05
dtest.config['Enabled'] = 10
dtest.config['AlarmThreshold'] = 1
dtest.config['PollingPeriod'] = 0.05
alarms.put_db_properties(dtest.name,dtest.config)
dtest.init()

This is the result you can expect when showing both alarm attributes (test/pyalarm/clock/clock and test/pyalarm/events/events) in a taurustrend:

[image: alternate text]

Is this approach really Event-Based?

Yes, but not asynchronously. PyAlarm will use Taurus to catch Tango Events and buffer them; but alarms are still triggered by the internal polling thread of PyAlarm.
It means that the PyAlarm.PollingPeriod property effectively filters how often incoming events are processed.

But, delegating event collection to Taurus allows to not execute read_attribute in the polling thread; allowing to very small PollingPeriod values (10-20 ms)

As seen in this picture, it allows to have a very fast reaction from the Alarm attributes respect to the trigger:

[image: alternate text]
This approach, however, is costly in terms of cpu usage if using polling periods below 100 ms. A pure-asynchronous event implementation of the PyAlarm is still pending.

Index

PANIC GUI User Guide

Contents

	PANIC GUI User Guide

	Description

	Filter levels

Description

panic.gui is an stand-alone graphical application to visualize and configure PANIC Alarm Systems.

The panic.gui module also contains widgets that can be embedded in other Tango applications (e.g. Vacca).

Filter levels

There are three levels:

	AlarmDomain : servers/devices/domains that will be inspected for alarms

	AlarmView : within the AlarmDomain, stored filters that allow to select a given subsystem

	UserFilters : defined at runtime in the application using the list combo boxes.

The AlarmDomain will be defined at application startup and will restrict the PyAlarm instances the GUI connects with.
It means that whatever AlarmView is chosen afterwards, PyAlarm that are not part of the domain will not be inspected.

AlarmDomain is the “filters” launcher argument existing since Panic 4; since Panic>6 is stored as PANIC.AlarmDomains property.

AlarmView is introduced in Panic>6 and stored as a PANIC free property.

From Panic>7 onwards, domain can be changed in a running application.

 For contributing to Panic via pull requests I suggest to:

	put any new api method within try/except/traceback clauses; so any bug is properly catched and printed

	attach a piece of code for validating the behaviour

	add an .rst file documenting the behaviour of the new feature

This three conditions will help me to evaluate the integration of new features into the device/api/gui

panic Package

widgets Module

AlarmWikiLink PyAlarm Class Property

This class property allow to provide links to Wiki pages on alarms.

It is done as a link appearing in alarm window widget,
if there is AlarmWikiLink PyAlarm class property defined.

The link is formed from this property by substitution of {%ALARM%}
with actual alarm name.

So, the value of the property may looks like:

http://wiki.example.com/alarms/{%ALARM%}

Configuring PyAlarm to send Telegram messages

First of all, you’ll need a telegram account and sign-in to https://web.telegram.org

To send messages to Telegram users we will need a Bot (https://core.telegram.org/bots/api).

To create a new Bot (see https://www.sohamkamani.com/blog/2016/09/21/making-a-telegram-bot/):

	Open a chat with @BotFather bot

	Type /newbot

	Enter your bot name and bot_address

	Take note of your bot token (a long number like NNNN:ASDFASDFASDFAASDF)

Once you have it, you can test your bot:

https://web.telegram.org/#/im?p=@<bot_address>
https://api.telegram.org/bot<token>/getMe

Then, add a new property TGConfig to PyAlarm with your token:

fandango.tango.put_device_property('your/device/name','TGConfig','NNNNN:YOURBOTTOKEN')

To start sending messages you will need now your user_id or chat_id (not your username, but a numeric identifier).

To obtain it:

	Open a chat with @userinfobot to get your numeric user_id.

	Add your previously created Bot to a group and call https://api.telegram.org/bot<token>/getUpdates to see the group chat_id.

Once you have the ID, just add a new receiver:

TG:654654654

AlarmView data flow

__init__ does:

buildList() is called from:
* onReload()
* onRefresh()
* onFilter()

buildList() does:
* gets alarm that match severity: findListSource()
* regExFiltering()
* filterByState()
* orders by result of alarmSorter()
* triggers changed if list size changed
* then, compares each ordered value with previous order
* if an alarm is new: modelsQueue.put(..,row,..alarm,..)
* if device has changed, adds new model

findListSource:
* called by buildList

showList() is called from:
* onReload()
* onRefresh()
* onFilter()

onReload() will:
* call api.load()
* adjust size of columns
* clean removed alarms

onRefresh() just calls buildList and showList.

hurry() method is called after New/Init and forces onReload() after 1s
onFilter() method is called after Reset/Acknowledge/Disable or any change on filters
It will trigger buildList() and showList() and resets timers

showList() does:
* remembers selected items
* removes all items from list
* applies active and time sorting filters
* adds new items to list widget
* reapplies previous selection

onRefresh called by refreshTimer (REFRESH_TIME = 5s)
onReload called by reloadTimer (60 s) and onClone()

Creation of Tango Attribute (Taurus 4.0)

What’s the difference between enable polling, activate polling and force polling?

By default, polling is enabled and not active. If by any reason it is disabled; calls to activatePolling() will do nothing. But, an enablePolling(force=True) will also activate polling).

Activating polling means that this method is called:
self.factory().addAttributeToPolling(self, self.getPollingPeriod())

But this is a protected member that is not directly called by activatePolling(); it will call changePollingPeriod() instead that will not trigger the polling if it wasn’t already active.

!?!?: Then, a call to activatePolling(period) will first activate (changing the period), then enable it. BUT!, polling will be activated only if it was already active!!. If activatePolling() is called without force=True then it in fact does nothing!?!? It activates polling only if was already active; and then enable it but not start it !?!?

For me, it seems a Bug or a dangerous uncoherency:

self._activatePolling() => activates polling if it was enabled
self.activatePolling() => enables polling but does not activate it unless you add force=True argument (which is not documented in method description). In fact, it also has an unsubscribe_evts argument which is never used !?

…

self.__subscription_state will keep if the attribute have been subscribed or not

__subscription_event is a threading.Event

_events_working is initalized to False

__chg_evt_id will remember the subscription id
__cfg_evt_id is similar

TaurusAttribute.__init__ is also called

In Taurus, the parent is the Taurus Device
the DevHWObj is the Device Proxy
The ValueObj is the attr_value returned by read_attribute

cleanUp()

will unsubscribeConfEvents and call TaurusAttribute.cleanUp

write()

After a write() of a ReadWrite attribute this method is called (value = read_attribute):

self.poll(single=False, value=result, time=time.time())

It is not called if isUsingEvents() returned True

poll()

It is the method call by polling threads; it is a read(cache=False)+fireEvent()

if single: return self.read(cache=False)
else: self.decode(kwargs[‘value’]) #Value can be forced from an external source

except: fire Error event
else: fire Periodic event

subscription_event.set() is called always #read() calls are blocked by this event if attributes were in Subscribing or Pending state; IS IT A BUG?

the ‘time’ argument seems not used at all (taken from attr_value?)

attr_value returned by decode is a TangoAttrValue

read()

if cache = True the cache is checked:

	if delta attr_time < polling_period:

	value (or error) is returned

	else:

	proceeds to next condition

if cache is False or (not isPollingActive and state in (Pending, Unsubscribed)):

return read_attribute()

	elif SubscriptionState in (Subscribing,Pending):

	event.wait() !?!?! Hungs until subscription finishes?

last attr_value is returned

THEN:
A read() will first check the cache, if the value is not older than polling period, it is returned.
If it was received by an event, it will be returned if the subscription state is not pending, unsubscribed or subscribing. If it is, a HW read or a .wait() may be called until an event is processed.

BUT: a Pending state just means that a subscribe was tried on a device that has no events; so most devices will have a Pending state. It means that a read(cache=True) that gets an attr_value not updated will hung in a .wait() until the next polling is executed. If the polling thread is dead, it may be forever.

Note, that all attributes in polling will be always in PendingSubscribe state; they will switch to Subscribed once the first event arrives; at this point the polling will be deactivated.

A read() will never activatePolling(); it can be done only by a push_event() receiving an error event listed in the EVENT_TO_POLLING_EXCEPTIONS; or if the first subscribe_event call fails.

Other confusing thing is that subscribeEvents does not check if the attribute was already subscribed. So it can override the existing ID!

Also, unsubscribing events deactivates polling. It should happen only at cleanUp() or when removing the last listener. But if the state was pending it would disable completely the update of attributes; without checking if it was the last listener.. When adding the first listener it will subscribe to events again (and/or activatePolling).

ListenerAPI

fireRegisterEvent(listener)

v = read()
fireEvent(Config/Change,v,listener)

addListener()

That’s the method were subscription is triggered, state
checks are based on initial state, so calls to subscribeEvents
do not affect later checks.

if first calls TaurusAttribute.addListener(); if fails it returns
It is checked that listeners>=1

If it is unsubscribed and it is firstListener ===> subscribeEvents()

	if len(listeners)>1 and (was Subscribed or isPollingActive()):

	fireRegisterEvent()

If Concurrent, event is queued with taurus.Manager.addJob

return result of TaurusAttribute.addListener

removeLIstener()

If it was the last listener it calls unsubscribeEvents()

returns TaurusAttribute.removeListener()

isUsingEvents()

returns state == Subscribed

subscribeEvents()

subscriptionEvent is renewed !?! (previous event is overriden)

state => Subscribing

First it tries to subscribe:
chg_evt_id = DeviceProxy.subscribe_event(attr,CHANGE,self,filters=[])

If fails then:
state => Pending
activatePolling()
chg_evt_id = DeviceProxy.subscribe_event(attr,CHANGE,self,filters=[],stateless=True)

stateless=True means that a thread is started to try subscribing every 10 seconds.

What happens to this thread if device is killed or events disabled!?!?

Which callback is executed?

If the attribute is subscribed with NO stateless flag and then the device dies?

Is the keep alive thread enabled or not?

unsubscribeEvents()

dp.unsubscribe_event()
deactivatePolling()
state => Unsubscribed

Note, this happens independently of which is the previous state (Subscribed or Pending)
So … UNSUBSCRIBING ALWAYS DEACTIVATES POLLING!?

subscribeConfEvents():

It is very different from subscribing change events.

The subscription call is always stateless; no state is changed and if it fails (device is dead?)
then a manual call to attribute info is done.

BUT!, it is using the deviceproxy.attribute_query, that will not work if the device is dead.
A call to the database device should be used instead.

Then … what will happend with the configuration event if the attribute does not send that config event?

?

pushEvent()

if it is a config event, gets the config and then tries to read the value (.getValueObj(cache=False)

	If it is an attribute event: gets attribute value

	state => Subscribed()
deactivatePolling() (it it is not forced)
triggers fireEvent(listeners) (concurrent or not)

	If error and has EVENT_TO_POLLING_EXCEPTIONS

	if polling not active: Activate Polling
No event fired for Listeners!!

	elif error:

	value = None, get the error
state = Subscribed !?
deactivatePolling() !?
fireEvent(listeners)

A class that stores timestamp for each different value of event received; it may have some application.

NOTE: This behavior described does not seem to be implemented.

Testing Recipes

 http://www.tango-controls.org/community/forum/post/1123/

we’ve added a tiny feature to PyAlarm which pushes each alarm event as a JSON document to a simple “logger” device (using a command), which in turn stores the event in elasticsearch. The historical data can then be viewed through the kibana web UI, where users can do various filtering and also set up specific views. So far it has been pretty solid, with very low maintenance.

I’m attaching a kibana screenshot from our controlroom. The UI is a bit strange but powerful once you get used to it. However, the main benefit is that we’re not developing it ourselves :)

Caveat: we’re currently using ES 1.X and kibana 3, but the current version of ES is 2.X and kibana 3 is no longer compatible. Kibana 4 is a complete rewrite and works quite differently, with an even more confusing UI. We’re not sure whether to migrate or how.

PyAlarm Elasticsearch logging

The purpose of these changes is to enable PyAlarm to push all alarm events into a database, in this case Elasticsearch but it should be pretty easy to support other databases if desired. The main reason we’re going with ES is that it is already established as a platform for storing logs, and has some mature UI tools for this such as Kibana.

I’ve tried to compile the changes we’ve made to PyAlarm to support logging to elasticsearch. The system has been in use for about 1 year now and has worked pretty well. The solution also requires another part, namely the “logger” device. It is a separate device that has an “Alarm” command that takes a JSON string and stores that as a document in elasticsearch. This device is currently undergoing some work, mainly to support newer versions of ES, but we will make it available soon.

This is not a patch, since I think we’ve diverged from the main branch of PyAlarm. We tried to make the changes as lcal as we could so it should be easy to just put it in. You can of course refactor this as you like if you think it would fit better in some other way.

We added an optional string property called “LoggerDevice”. It can be configured with the name of a “logger” device. If a logger device is configured, we try to create a proxy to it in “init_device”, and if this is successdul, save it in an internal variable called “self._loggerds”. If the property is not set, the PyAlarm behavior is not affected.

Then, there are a few additions to the “send_alarm” method in PyAlarm:

	if self._loggerds:

	# send alarm data to the logger device
report = self.generate_json(tag_name, message=message, values=values)
self._loggerds.alarm(report)

and “free_alarm” method:

	if self._loggerds:

	# send alarm data to the logger device
report = self.generate_json(tag_name, message=message, user_comment=comment)
self._loggerds.alarm(report)

(Note: The communication with the logger device should perhaps be done in an asynchronous way, so that it won’t block PyAlarm if the logger device is slow.)

They call the following method that was added to PyAlarm:

“””
Take an alarm and turn it into a JSON string representation.
The format of this string is dictated by the Logger
device, and follows the shape of the Alarm object.
“”“

Check alarm
try:

msg = “Generating a json report for alarm {0}”
self.info(msg.format(tag_name))
alarm = self.Alarms[tag_name]

	except KeyError:

	return self.warn(‘Unknown alarm: {0}’.format(tag_name))

Helper function
def cast_dict(dct):

“”“Convert Boost.Enum objects to strings”“”
boost_eval_type = PyTango._PyTango.AttrQuality.__base__
for key, value in dct.items():

	if isinstance(value, boost_eval_type):

	dct[key] = str(value)

Build dictionary
try:

self.info(“Building dictionary for alarm {0}”.format(tag_name))
_values = values or self.PastValues.get(tag_name) or {}
cast_dict(_values) # Convert Boost.Enum objects to string
report = {

“timestamp”: int(time.time() * 1000),
“alarm_tag”: tag_name,
“message”: message.strip(),
“values”: [{“attribute”: attr, “value”: value}

for attr, value in _values.items()],

“device”: self.get_name().strip(),
“description”: alarm.parse_description().strip(),
“severity”: alarm.parse_severity().strip(),
“instance”: alarm.instance,
“formula”: alarm.formula.strip()

}
if user_comment:

report[“user_comment”] = user_comment

	if alarm.recovered:

	report[“recovered_at”] = int(alarm.recovered * 1000)

	if alarm.active:

	report[“active_since”] = int(alarm.active * 1000)

	except Exception as exc:

	msg = ‘Unexpected exception while building dictionary’
msg = ‘for alarm {0}: ‘.format(tag_name)
return self.warn(msg + repr(exc))

Dump the json string
try:

self.info(“Dumping json for alarm {0}”.format(tag_name))
string = json.dumps(report)

	except Exception as exc:

	msg = ‘Unexpected exception while dumping json’
msg = ‘for alarm {0}: ‘.format(tag_name)
return self.warn(msg + repr(exc))

	else:

	self.debug(string.replace(‘%’, ‘%%’))

Return json
return string

Finally, in order for each alarm “event” to be identifiable in the DB, we added an “instance” field to the Alarm object that is a unique ID that ties each activation and deactivation of an alarm together. This is not really necessary for the operation, but it may turn out to be useful in the future. The point is that if you have the activation event of an alarm it makes it easy to find when it was deactivated, and vice versa.

In Alarm we added the method:

	def activate(self):

	self.active = time.time()
self.instance = str(uuid4()) # import uuid4 from uuid

And then in PyAlarm replaced the line:

self.Alarms[tag_name].active = time.time()

with

self.Alarms[tag_name].activate()

That’s it!

/Johan

 _static/ajax-loader.gif

_images/clock-events-zoom.png
TaurusTrend <@controls03>

05

05

15+

[3 =clock
~EVENTS

F2s

Fis

Fos

Fos

_images/clock-events.png
05

05

15+

TaurusTrend

3 -—clock
~ EVENTS

F2s

Fis

Fos

Fos

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to panic’s documentation!

 		
 PANIC Description

 		
 PANIC, a python Alarm System for TANGO

 		
 Description

 		
 Other Project pages

 		
 PyAlarm Device Server

 		
 Panic GUI

 		
 Authors

 		
 LICENSE AND WARRANTY

 		
 Changelog

 		
 PANIC 7.3.0

 		
 PANIC 6.3.1

 		
 PANIC 6.2.1

 		
 PANIC 6.0

 		
 Release 5.4 - 2015/12

 		
 Release 5.2 - New evaluate() from API/GUI, added user admins for alarms

 		
 Release 5.1 - May 2015

 		
 Release 5.0 - May 2015

 		
 Release 4.20

 		
 Installing PANIC on a New System

 		
 Dependencies

 		
 Run the GUI and create a PyAlarm

 		
 Run the PyAlarm Server

 		
 PyAlarm Device Server User Guide

 		
 Description

 		
 Internal Structure

 		
 The AlarmAPI

 		
 The updateAlarms thread

 		
 The TangoEval engine

 		
 Alarm Syntax Recipes

 		
 Sending a Test Message at Startup

 		
 Testing a device availability

 		
 Getting Tango state/attribute/value/quality/time/delta in formulas

 		
 Creating a periodic self-reset alarm

 		
 Enabling search, expression matching and list comprehensions

 		
 Some list comprehension examples

 		
 Grouping Alarms in Formulas

 		
 PyAlarm Device Properties

 		
 Distributing Alarms between servers

 		
 Alarm Declaration Properties

 		
 REMINDER / RECOVERED / AUTORESET messages

 		
 Snapshot properties

 		
 Alarm Configuration Properties

 		
 Device Server Example

 		
 Mail Messages

 		
 Format of Alarm message

 		
 Format of Recovered message

 		
 PANIC Recipes

 		
 Alarms Distribution

 		
 About distributing load (answer to paul bell, 2014)

 		
 Alarm Formulas Examples

 		
 Sending a Test Message at Startup

 		
 Testing a device availability

 		
 Getting Tango state/attribute/value/quality/time/delta in formulas

 		
 Creating a periodic self-reset alarm

 		
 Enabling search, expression matching and list comprehensions

 		
 Some list comprehension examples

 		
 Grouping Alarms in Formulas

 		
 Alarm on delta and value

 		
 Generating Clock Signals

 		
 AlarmStates

 		
 State transitions

 		
 Disabled States

 		
 IEC 62682: AlarmStates Definition and related Actions

 		
 Hierarchies In Alarms

 		
 TOP/BOTTOM

 		
 Alarm GROUP

 		
 Special Alarm Recipes

 		
 Special keys used in Alarm formulas

 		
 Expiration Date

 		
 Accessing PyAlarm Values CACHE

 		
 Clock: Alarm triggered by time

 		
 Exception Management

 		
 Grouping Alarms

 		
 How PyAlarm Device Server Works

 		
 The AlarmAPI

 		
 The updateAlarms thread

 		
 The TangoEval engine

 		
 PANIC Setup

 		
 Description

 		
 Launch your PANIC System in few steps

 		
 Exception Management in Panic Alarms

 		
 Using the PANIC python API

 		
 The Panic Module

 		
 Browsing existing alarms

 		
 Adding / Removing alarms

 		
 Modifying alarms

 		
 Modifying a receiver in all alarms

 		
 PanicAdminUsers property

 		
 PyAlarm Startup Modes

 		
 PyAlarm timing configuration

 		
 Testing your PyAlarm installation

 		
 PANIC Receivers, Logging and Actions

 		
 Alarm Receivers

 		
 SMS / Mail Config

 		
 Global Receivers

 		
 Logging

 		
 Triggering Actions from PyAlarm

 		
 PyAlarm Using Events With Taurus

 		
 Setting up a PyAlarm getting Tango events from Taurus

 		
 Is this approach really Event-Based?

_static/plus.png

_static/minus.png

_static/panic-6.png

_static/up-pressed.png

_static/up.png

